Делаем свой драйвер для китайского фонаря

Сообщества › Электронные Поделки › Блог › Простой драйвер светодиода для фонаря на микроконтроллере

Хочу поделиться решением для питания светодиода типа XM-L, XM-L2, XP-L, XP-G, XP-G2, Nichia 219 от одной литиевой батареи. Такие драйверы я давно применяю в фонарях с питанием от одного элемента 18650 и управлением силовой кнопкой. При разработке ставились задачи: простота, малые габариты, богатая функциональность.

Драйвер имеет 4 режима – слабый, средний, мощный и мунлайт. Три основных режима вынесены в основную линию и переключаются коротким отключением питания, мунлайт скрыт. Переключение от слабого к мощному.

Драйвер без памяти в основной линейке, т.е. всегда стартует со слабого режима. Время сброса состояния перебора режимов

1 секунда. Из включенного состояния при коротком прерывании питания фонарь переходит на следующий режим.

Скрытый мунлайт активируется при 3 коротких (менее 0.25 сек) кликах из включенного состояния (или четырех из выключенного). Мунлайт запоминается, после выключения при следующем включении фонарь стартует именно в этом режиме. Для выход из режима осуществляется коротким кликом (точно так, как для переключения режима). Выходит всегда в слабый режим.

Существует возможность настройки яркости мунлайта, рампинг осуществляется при 11 коротких кликах. Фонарь начнет перебирать возможные варианты яркости, в нужный момент для сохранения текущей яркости следует сделать короткий клик (как при переключении режимов), длинный клик — отключение, будет загрузена настройка по умолчанию. Индикация фиксации новых настроек – 1 вспышка, загрузки настройки по умолчанию – 3 вспышки.

Система индивидуальных порогов обеспечивает ступенчатый переход на слабые режимы при разряде батареи. Полностью драйвер выключается при 2,75V.

Система индикации заряда батареи включается при 5 коротких кликах (шести из выключенного положения). Индикация осуществляется вспышками СИД от 1 до 6. Чем больше вспышек – тем больше заряд АКБ.

Присутствует двухуровневый термоконтроль (ТК). Режим калибровки ТК включается 13 прерываниями из включенного состояния. После этого фонарь после серии вспышек для индикации включения режима ТК перейдет с режим нагрева. Как только температура корпуса фонаря достигнет нужного значения, следует сделать короткий клик. Успешная запись нового значения осуществляется 1 вспышкой. Длинное отключение в режиме ТК сбрасывает настройку на значение по умолчанию, индикация – 3 вспышки.

Максимальный возможный ток при указанных на схеме номиналах 2.0А. Уменьшив сопротивление шунта можно поднять максимальный ток до 3-х ампер.

В драйвере имеются хорошо спрятанные стробы. 7 короткий прерываний и включенного состояния или 8 из выключенного включат быстрый строб, коротким прерыванием можно переключать быстрый-медленный-быстрый-медленный. Выход из этого режима — длительное нажатие кнопки.

Драйвер обеспечивает плавное включение и переключение всех основных режимов, что позволяет уменьшить нагрузку на контакты кнопки, т.к. ток достигает своего максимального значения после установления надежного соединения контактов кнопки.

Напряжение питания драйвера от 2.75В до 4.35В. В архиве прошивки для ATTiny45 и ATTiny85 (прошивка для 45-ой не тестировалась) и батник для прошивки. В батнике указаны фусы.

За стабилизацию тока отвечает программный ПИД регулятор. Для контроля температуры и напряжения питания используются встроенные в МК датчики. Частота работы понижающего преобразователя 250 килогерц. Транзистор CSD13202Q2 обладает довольно легким затвором, что позволяет управлять им напрямую с лапы МК. Заменить его с некоторым ухудшением параметров драйвера можно только на IRLHS6242. R3 — токовый датчик, при максимальном токе падение напряжения на нем 50mV. Все конденсаторы только керамика не ниже X5R.

На фото собранный драйвер:

Все детали драйвера установлены с одной стороны. Диаметр драйвера 17мм, кроме того драйвер можно обточить до 15мм диаметра. Толщина текстолита 1,5мм, полная толщина драйвера – 3,5мм.

Делаем свой драйвер для китайского фонаря

Глобальная доработка светодиодного фонарика

Автор: DooMmen
Опубликовано 13.09.2012
Создано при помощи КотоРед.

Светодиодные фонарики китайского производства, которыми запаланен весь наш рынок – казалось что может быть проще (как показывает опыт – для китая это слишком просто), вроде-бы и выбор большой, но в каждом фонарике может что-то не понравиться, а если углубляться во внутренности, и схему – иногда удивляешся как оно работает.

Поставил я себе задачу – “Найти подходящего донора, и собрать фонарь пригодный для выживания, с которым можно отправиться куда угодно”. После долгих поисков был найден донор:

Это китайский фонарик фирмы Police с маркировкой 20W.
После приобретения фонарик был разобран и проанализированы внутренности. Внутри стоял одноватный светодиод с отражателем дающим очень большую боковую засветку и очень узкий луч света. Драйвер (если это так можно назвать) состоял из небольшого количества деталей – микросхема ME2108А, катушка индуктивности, конденсатор, диод. Вроде-бы все нормально, но дроссель с микросхемой в данной схеме очень грелся, схема потребляла примерно 0.5А от пальчиковой батарейки, и светодиод давал относительно слабый световой поток. Как оказалось позже – данный преобразователь давал без нагрузки на выход 4.5V, а светодиод был рассчитан на 3.6V, за счет маленького тока насыщения дросселя происходило падение выходного напряжения до необходимого и схема “работала”.

Так как у меня была задача сделать эффективный источник света, а не использовать китайский драйвер у которого КПД “ниже чем у паровоза”, я решил его доработать поменяв светодиод на OSRAM LUW W5AM-LXLY-6P7R-Z с коллиматором OSS-M на угол 30° (можно было поставить всеми любимый Cree, но у нас с ними проблемы, такие как отсутствие маленьких подложек и оптики), и поставить драйвер на основе специализированной микросхемы ZXSC310.

Светодиод фирмы OSRAM был выбран по ряду причин: при токе 350мА светодиод дает световой поток до 150 люмен, максимальный ток светодиода составляет 1А, этот светодиод почти совместим по посадке с штатным, у него самая низкая цена при его мощности.


Замена светодиода производится подогревом подложки светодиода снизу. Отпаиваем старый светодиод и устанавливаем предварительно отцентрировав новый (благо они почти совместимы по выводам, но это не мешает замене).

Далее производим подгонку корпуса фонарика под нашу оптику (которую необходимо подогнать под фонарик)), растачиваем место под коллиматор:


Так-же необходимо снять фаску с края корпуса до резьбы, и уменьшить высоту гайки крепления оптики (так как наша система ниже чем стандартная).
Как показал опыт исполькования различных фонарей – узкий луч яркого света в большинстве случаев ухудшщает видимость и дает малую освещенность, поэтому мой выбор остановился на коллиматоре фирмы LEDIL с маркировкой OSS-M на 30º, предназначенный для светодиодов OSRAM серии DRAGON.
Дорабатываем коллиматор (по умолчанию коллиматор квадратный и в корпусе для приклеивания на подложку светодиода). Вытягиваем коллиматор из его корпуса, отрезаем уши и стачиваем его до необходимого диаметра на точиле.


Последняя доработка корпуса – расточка отверстия гайки крепления оптики (делал на заводе на станке), и герметизация. Отверстие растачивается буквально на 3мм почти до диаметра коллиматора. Для герметизации вклеиваем на термоклей комплектное защитное оргстекло (для этого удобно разогревать гайку феном и намазывать термоклей на горячую поверхность), так-же необходимо герметизировать все резьбовые соединения, хоть там и стоят резиновые уплотнители – они не помогают так как не достают, для решения данной проблемы наматываем сантехническую монтажную ленту в пазы для уплотнителей, и устанавливаем уплотнительные комплектные кольца (сверху их желательно смазать, например вазелином или циатимом) .

Так, с корпусом вроде все понятно, теперь наконец-то приступаем к электронике.

Первая версия фонарика была с широко распространенной схемой драйвера на ZXSC310 с питанием драйвера с выхода (эта схема позволяет “выжать” с батарейки всю мощность, и просаживает наряжение на батарее на одном дыхании до самого возможного миниума).


Но так как меня заразили страшнейшей болезнью – болезнью “Люмена”, и кроме того что необходимо получить большую яркость нам необходима универсальность фонаря и долгое время работы. Для большой яркости обычные пальчиковые батарейки не подходят, и я применил Li-Ion аккумулятор LIR14500на 700 mAh, который по размерам совпадает с обычной пальчиковой батарейкой. Но вот не задача – напряжение аккумулятора в заряженном состоянии 4.2V, а максимальное напряжение светодиода при токе 300мА – 3.4V. Повышающий драйвер не подходит.
Вот тут то я и решил воспользоваться основой схемотехники повышающе-понижающих драйверов (Buck-Boost). Кроме схемы драйвера я решил сделать два режима яркости, для этого применил миниатюрный PIC10F220.

Читайте также:  Как сделать электрический спиннер своими руками


Данная схема драйвера обеспечивает питание светодиода током до 300мА при питании от аккумулятора, и ток порядка 100мА при питании от батарейки. Так как в данной схеме нет обратной связи по току светодиода, то при питании от пальчиковой батарейки ток уменьшается, но нестабильность тока при работе от аккумулятора почти не заметна.

Второй задачей была разработка системы управления драйвером. Данная система должна определять напряжение заряда аккумулятора, и при низком заряде индицировать это. Так-же необходимо обеспечивать 2 режима яркости (для увеличения продолжительности свечения).

Данная схема обеспечивает:
-Переключение режимов при кратковременном розрывании питания
-Два режима яркости
-Индикацию разряда аккумулятора и отключение драйвера при полном разряде
-Возможность работы от пальчиковой батарейки

При использовании батарейки система управления не работает (внутренний подтягивающий резистор микросхемы драйвера запускает рдайвер), но как только будет установлен аккумулятор – напряжения питания становится достаточным для запуска контроллера, и фонарик включается в первом “Эконом” режиме на 40% яркости. При кратковременном нажатии на кнопку питания происходит отключение питания, и при отпускании кнопки включается второй режим – максимальная яркость.

Для индикации разряда аккумулятора я использовал АЦП и измерение напряжения внутреннего опорного источника 0.6V (значения АЦП обратнопропорциональны напряжению питания, с учетом падения на диоде). При снижении напряжения до минимального фонарик переключается примерно в 10% яркости, а при полной разрядке аккумулятора контроллер выключает драйвер.

Больше всего проблем было при попытке сделать переключение режимов, и сброс режима через некоторое время (что-бы фонарик включался не с последнего режима, а с эконом), были попытки запитать контроллер от конденсатора на время разрыва питания кнопкой, но возникли проблемы с пробуждением из режима спячки, так как я использовал порт GP2, как датчик наличия напряжения на драйвере, а прерывания по этому выводу порта отсутствуют, а переключать на другой я посчитал неблагоприятным для внутрисхемного программирования контроллера. Долго проводив эксперименты я заметил что контроллер сохраняет состояние регистров даже при долгом отсутствии питания, и проверив теорию я понял в чем дело – на конденсаторе C1 при выключении питания остается заряд примерно 0.7V (при этом напряжении драйвер перестает работать), и этого напряжения вполне хватает что-бы в регистрах контроллера сохранились последние значения (а именно режим). Для “сброса” последнего состояния (происходит примерно за 5с после выключения) я поставил резистор R1.

Перемычка JP1 была введена на всякий случай для отключения котроля разряда.

Двухсторонняя плата получилась достаточно миниатюрной, и устанавливается на место штатной. Метализацию отверстий я производил заклепыванием медной проволоки:


Детали: конденсаторы танталовые в корпусе А, дроссель Sumida CDRH6D38NP-100NC, резисторы типоразмера 0603, низкоомные резисторы датчика тока – типоразмера 0805 сопротивлением 0,05 Ом (с маркировкой E05) установлено 2шт параллельно друг на друге для получения сопротивления 0,025 Ом, диод Шоттки – миниатюрный с низким падением на ток 2А, транзистор (Zetex) на максимально возможный в этом корпусе ток (можно поставить ZXTN25012, ZXTN19020). Светодиод и оптичесскую систему можно использовать и другую, главное что-бы светодиод был расчитан на ток более 300мА для уменьшения тепловыделения.

Драйвер без нагрузки не включать! При включении без нагрузки в лучшем случае будет пробой конденсатора C2, в худшем – выход из строя транзистора, с последующими спецэффектами в виде фейерверка.
Переполюсовка питания драйвера не допустима! При переполюсовке взрывается конденсатор С1 и транзистор!

В итоге получился фонарик внешне почти ни чем не отличимый от оригинала (кроме оптики, которая уже привлекает внимание), но с параметрами и углом светового потока намного лучшими чем у оригинала:

Прошивка данного устройства написана на экологически чистом ассемблере.

Доработка китайского налобного фонарика, драйвер светодиода на AMC7135

Поступил мне тут заказ от одного хорошего знакомого, который увлекается рыбалкой. У него был простенький налобный фонарик, который обладал рядом недостатков, но полностью устраивал по размерам и внешнему виду. Ну что ж, для хорошего человека – хорошее дело, ну а для меня – просто тренировка мозгов и рук.

Приступим. Для начала выделю преимущества данного фонарика:

  • компактный и легкий корпус;
  • возможность регулировки фокуса;
  • удобное расположение органов управления (кнопка), учитывая что фонарик налобный.

Теперь недостатки, которых куда больше:

  • неудобное управление – три режима которые переключаются по циклическому алгоритму (четвёртый режим “выключено”), то есть если нужный режим пропустил, то надо “прощелкивать” все режимы по кругу, пока не “дощелкаешь” до нужного режима;
  • один из режимов – мигающий – вообще бесполезный, только мешает управлению;
  • нет контроля состояния аккумулятора, то есть при каждом цикле разряда портит аккумулятор, сильно разряжая его (если не выключить, может посадить аккумулятор до 1. 2 вольт);
  • нет стабилизации тока, то есть с разрядом аккумулятора яркость постепенно падает;
  • заряд аккумулятора идет тупо через резистор, нет никакого контроля зарядного тока и отсутствует правильный алгоритм заряда литий-ионного аккумулятора (при каждом цикле заряда гробит аккумулятор);
  • стоИт китайский светодиод с низкой эффективностью;
  • стоИт китайский аккумулятор с завышенной емкостью на этикетке.

Теперь о том, что бы хотелось получить в итоге:

  • удобное управление режимами, убрать мигающий режим;
  • ввести стабилизацию тока через светодиод (поставить драйвер);
  • заменить светодиод на более эффективный и надежный (CREE XPG), тёплого свечения (вместо штатного холодного);
  • сделать контроль разряда аккумулятора, при разряде аккумулятора выключать фонарик;
  • добавить контроллер заряда литий-ионного аккумулятора;
  • заменить аккумулятор на нормальный.

Вскрываем корпус фонарика.

Здесь мы видим, что его “мозги” сделаны на основе БИС микросхемы, поэтому они не поддаются никакой модификации.

При замене светодиода на другой светодиод, выходной ток изменился почти на 50%, что говорит об отсутствии какой либо стабилизации тока. Решено выкинуть родную плату и сделать свою. В качестве управляющего контроллера я выбрал ATtiny13A-SSU ввиду следующих основных преимуществ:

  • малая цена – около 30 рублей (на момент написания статьи, май 2014г.);
  • компактный корпус поверхностного монтажа;
  • в режиме сна потребляет менее 500 наноампер (. );
  • возможность работы при низких напряжениях питания (вплоть до 1.8в);
  • возможность работы при температуре ниже 0 градусов.

В качестве драйвера светодиода выбор пал на AMC7135 благодаря следующим характеристикам:

  • возможность работы при низких напряжениях питания;
  • минимальное падение напряжения на микросхеме – всего 0.15в;
  • возможность ШИМ-регулировки яркости светодиода;
  • компактный корпус.

Небольшие пояснения о работе схемы и применяемых компонентах. Для измерения уровня заряда аккумулятора, используется АЦП микроконтроллера и внешний источник опорного напряжения (далее ИОН) REF3125 с выходным напряжением 2,5В. Внешний ИОН используется не просто так – с его помощью достигается измерение напряжения аккумулятора с минимальными погрешностями, так как точность встроенного в микроконтроллер ИОН’а оставляет желать лучшего. Управление AMC7135 производится при помощи ШИМ-сигнала, частотой 500 Гц. При отключении драйвера, микроконтроллер отключает AMC7135, обесточивает ИОН, и переходит в спящий режим “Power Down”, потребляя менее 1 мкА. Устройство не требует какой-либо настройки и корректировки, и после сборки и прошивки начинает работать сразу. Чтобы можно было выбрать напряжение отключения драйвера “под себя”, в конце статьи прилагается архив с прошивками под напряжения 3,1. 3,6 Вольт с шагом 0,1В.

Развожу печатку, травлю, запаиваю, пишу софт в AVR Studio 5, прошиваю микроконтроллер. На этапе изготовления платы нужно просверлить отверстия, и соединить перемычками дорожки с обеих сторон платы. Я взял медную жилу от витой пары, залудил её, и сделал из неё перемычки.

Читайте также:  Кашпо для цветочного горшка из пластиковых бутылок

Вот что из этого получилось. Печатку и набор прошивок можно скачать в конце статьи.

На одной стороне платы (двусторонняя диаметром 18 мм) разместились все управляющие мозги, на другой стороне платы расположился драйвер светодиода с полигоном из меди для должного охлаждения. Опционально на плату может быть установлена вторая микросхема-драйвер AMC7135 для увеличения максимального выходного тока с 350 мА до 700 мА. Небольшие размеры платы выбраны не случайно – необходимо было уместить драйвер на родное место в корпусе. Вот фотка для оценки размеров получившейся платки:

Родной контроллер управления давал на светодиод следующий ток в режимах:

  • 1 режим, примерно 200 мА;
  • 2 режим, примерно 60 мА;
  • 3 режим, примерно 60 мА (мигающий).

Родной контроллер управляется по следующему алгоритму. При нажатии на кнопку выполнялся переход на следующий режим. 1 –> 2 –> 3 –> ВЫКЛ и так по циклу. Если нужный режим случайно пропустил, то придётся сидеть и “нащёлкивать” пока не дойдёшь до нужного режима. Также для выключения фонарика нужно “прощёлкать” все режимы. О быстром включении/отключении фонарика можно даже и не мечтать.

Моя плата контроллера с драйвером выдает следующие токи в разных режимах:

  • 1 режим, 30 мА;
  • 2 режим, 130 мА;
  • 3 режим, 350 мА (будет использоваться кратковременно, так как в корпусе фонарика не предусмотрено должного охлаждения для светодиода).

Мой контроллер управляется по следующему алгоритму. Однократное (короткое) нажатие выполняет включение/отключение фонарика (с сохранением последнего выбранного режима). Длительное удерживание кнопки выполняет переключение режима на следующий. Таким образом, мы имеем возможность как быстро включать/отключать фонарик, так и менять режимы. Надоедливого и бесполезного режима “мигалки” теперь нету. При снижении напряжения аккумулятора до заданного в “прошивке” уровня, фонарик переходит на предыдущий режим. Тоесть если стоял режим 3, то сначала контроллер включит режим 2, затем фонарик поработает какое-то время, затем включится режим 1, фонарик поработает ещё какое-то время, и только потом он выключится. В интернете уже есть аналогичные конструкции, но они либо имеют управление при помощи разрыва цепи питания, что не всегда оправданно, либо у них не используется режим сна, а это очень важно!!

Итак, выкидываем старые мозги, а также убираем конденсатор, зачем-то подключенный параллельно кнопке. Наверно китайцы боролись с дребезгом контактов. У меня обработка дребезга будет программная, поэтому конденсатор больше не нужен.

Также достаём штатный светодиод, будем менять его на эффективный светодиод CREE XPG с тёплым свечением.

Готовим наш новый светодиод:

Собираем оптический блок:

Теперь встраиваем новую плату управляющего контроллера и драйвера светодиода:

Таким образом, на внешний вид не произошло никаких изменений, но внутри теперь всё как и должно быть. Контроль разряда аккумулятора, стабилизация тока, нормальное управление режимами, и “правильный” светодиод. В выключенном состоянии контроллер потребляет мало энергии, так как микроконтроллер переводится в режим сна.

Позже был установлен нормальный контроллер заряда аккумулятора на микросхеме MAX1508, а также родной китайский аккумулятор был заменён на внешний блок аккумуляторов, состоящий из 2 оригинальных банок Sanyo UR18650.

В активном режиме микроконтроллер ATtiny13A потребляет менее 500 мкА благодаря работе на тактовой частоте 128 кГц. Также в активном режиме добавляется потребление AMC7135, потребление внешнего ИОН, и потребление внутреннего АЦП микроконтроллера. Суммарный ток потребления в активном режиме зависит от используемого ИОН, и может составлять от 0,1 мА до 1 мА. Я применил ИОН REF3125, суммарное потребление схемы в рабочем режиме составило 0,5. 0,8 мА.

ИОН REF3125 можно заменить на аналоги:

  • ADR381
  • CAT8900B250TBGT3
  • ISL21010CFH325Z-TK
  • ISL21070CIH325Z-TK
  • ISL21080CIH325Z-TK
  • ISL60002BIH325Z
  • MAX6002
  • MAX6025
  • MAX6035BAUR25
  • MAX6066
  • MAX6102
  • MAX6125
  • MCP1525-I/TT
  • REF2925
  • REF3025
  • REF3125
  • REF3325AIDB
  • TS6001

Прилагаю небольшое видео, демонстрирующее управление режимами. Видео снято давно, светодиод ещё тогда стоял родной, позже он был заменён на CREE XPG, также стоял родной аккумулятор. Лень было заново снимать видео. Также хочу предупредить, что не каждый программатор поддерживает прошивку микроконтроллеров на частоте 128 кГц. Для прошивки я использовал программатор “USBAsp” со включенной опцией “Slow SCK”. Всем удачных самоделок!!

Внимание! Прошивка управляющего микроконтроллера была полностью переписана. Алгоритм работы программы стал более корректным, устранены некоторые недочёты в работе устройства. Ниже Вы сможете скачать пробную версию прошивки с ограничением по времени работы 10 минут. По истечении тестового времени, гаснет светодиод и блокируется управление. После переподключения аккумулятора, вновь получаем 10 минут тестового времени.

Полную версию прошивки можно приобрести здесь.


Делаем драйвер для китайского фонаря своими руками

Доброе время суток. Наверное у многих есть такие фонари, но не все ими довольны…

Представляю вашему вниманию статью о том, как можно своими руками переделать чудо китайской промышленности в нормальный фонарь.

В итоге получилось следующее:

  • 4 режима мощности (100%, 45%, 14%, 4%);
  • Нет режима SOS;
  • ШИМ 37 кГц;
  • Контроль напряжения:
    при 3,3v ограничивает мощность,
    при 3,0v отключается;
  • Встроенный контроллер зарядки на 1А
  • Attiny13;
  • IRLML6401;
  • несколько резисторов;
  • светодиод;
  • контроллер заряда TP405;
  • программатор USBASP.

Не нужно делать плату, всё собирается навесным монтажом.
Схему, прошивку, проект, модель в Proteus и программу на видео можно скачать тут

Подробнее о сборке и программировании вы можете узнать из видео


Всем удачи.

> Купить в подарок или заказать уникальную вещь

  • Подробнее об авторе
  • 15 свежих записей

About Илья И

  • Встраиваемая сигнализация своими руками – 27.11.2016
  • Самоделка для эффективного общения с коллекторами – 24.07.2016
  • Как сделать из настенных часов таймер полива с датчиком дождя своими руками – 19.06.2016
  • Делаем 50W LED прожектор из хлама своими руками – 05.06.2016
  • Грибная грядка или вешенка на пнях – 08.05.2016
  • Высоковольтный эксперимент – 28.04.2016
  • Делаем драйвер для китайского фонаря своими руками – 04.04.2016
  • Регулируемая подсветка для клавиатуры своими руками – 29.03.2016
  • GSM сигнализация о протечке воды – 26.03.2016
  • Автомобильный пробник с двойной функцией – 24.03.2016
  • Подсветка ящика с таймером на батарейках – 23.03.2016
  • Сигнализация о протечке воды своими руками – 09.03.2016
  • Делаем модель танка Т-34-85 своими руками – 24.02.2016

10 Replies to “Делаем драйвер для китайского фонаря своими руками”

Повторил, всё отлично работает.
В моём случае был копеечный фонарь с СОВ светодиодом (очень хорошо заливает ближнее поле, хорош для монтажей), весь драйвер уместился на родной плате с кнопкой, «каплю» сточил, подпаялся к оставшейся меди. Совет тем, кто будет повторять: поставить электролитический конденсатор около контроллера (у меня 470 мкФ, наверное можно и меньше) иначе возможны глюки, особенно если от блока питания с длинными проводами испытывать. Я решил обойтись без контроля напряжения, для батарейного питания это лишнее, надо соединить 2 и 3 ноги если не соединить — может глючить
Спасибо что не зажали исходник программы, будет от чего освежать знания. И вообще огромное спасибо, переделал пару фонариков — не нарадуюсь.
С уважением, Влад.

Пользуйтесь на здоровье.
По поводу конденсатора — импульсные помехи нарушают работу микроконтроллера по питанию. НужнО поставить максимально близко к ногам МК неполярный конденсатор 0,1 мкф и более. Я рекомендую 1 мкф.
И все проблемы исчезают.
Но эти сбои проявляются не у всех, видимо зависит от внутреннего сопротивления батареи.
У меня не проявлялись эти сбои.

Можно использовать в схеме несколько светодиодов?

Доводим до ума налобный фонарь, или свой драйвер для китайца

Всем привет.

Что стало

4 режима мощности
100%, 45%, 14%, 4%
Нет режима SOS
ШИМ 37 кГц
Контроль напряжения:
при 3,3v ограничивает мощность,
при 3,0v отключается
Встроенный контроллер зарядки на 1А TP4056

В спящем режиме:
Микроконтроллер потребляет 0,1 микроампера — замерить не удаётся
TP4056 потребляет 1 микроампер, это по прибору — меньше прибор показать не может

Читайте также:  Самодельные ласточки в облаках

В шапке не мой фонарь. Я свой несколько лет назад покупал.

Материалы:
Attiny13, IRLML6401, несколько резисторов, светодиод
контроллер заряда TP4056, программатор USBASP (на ebay 5 баксов примерно)
Стоимость переделки

2,5 USD
Схема:
Не нужно делать плату, всё собирается навесным монтажом.
Схему, прошивку, проект и модель в Proteus и программу на видео можно скачать тут cloud.mail.ru/public/6gVo/ppNYarDTz
и немного внутренностей

Максимальный ток

Новое гнездо зарядки MicroUSB

Подробнее о переделке, замеры тока, как запрограммировать, и остальные вопросы вы можете посмотреть на видео

Убедительная просьба прежде чем писать комментарии, что так делать нельзя и всё сгорит, посмотрите сначала видео — там всё сказано об этом.

  • SKIP,
  • SKIP SKIP,
  • Требуется дальнейшая обработка
  • автор: IlyaVsamere
  • просмотры: 11421
  • рейтинг: +79

  • AlexandrNI
  • 28 марта 2016, 10:23

  • sergejkov
  • 28 марта 2016, 10:27

  • AlexandrNI
  • 28 марта 2016, 10:32

  • viperet
  • 28 марта 2016, 10:37

Особый почет и уважение у нас занимают DIY (сделай сам, сделано руками) — обзоры, где автор описывает свои знания и доработки по использованию заказанного товара

  • AlexandrNI
  • 28 марта 2016, 10:43

  • sergejkov
  • 28 марта 2016, 10:44

  • IlyaVsamere
  • 28 марта 2016, 10:53

  • Nkk
  • 28 марта 2016, 16:28

Мне тоже кажется, что данная статья немного не вписывается в мое представление местных обзоров.
1. Нет ссылок на компоненты, хотя три резистора из китая заказывать нецелесообразно, а модуль заряда уже обсуждался, но можно было указать ссылку хотя бы на него, на программатор, на микроконтроллер и вот эту трёхногую логику.
2. Указанная в описании цена не соответствует цене товара по указанной возле цены ссылке. Цены на компоненты озвучены только в видеоролике и не соответсвуют действительности: программатор можно найти и за $3, а платы заряда для аккумуляторов я покупаю по 20 центов.
3. Не понятны принципы работы схемы, подойдет ли она, если нужна максимальная яркость свечения безотносительно ко времени? Какой ток потребляет схема при выключенном светодиоде (сколько часов можно не бояться, что акумы разрядятся)? У меня как-то отключенная велофара высадила 4 аккумулятора и понял я это только по нагреву одного из них.

Данный обзор больше направлен на раскрутку видео автора, чем на осведомление читателей о сути поделки. Посмотри видео, лайкни и подпишись на канал, а потом гугли все нужные компоненты сам.
Автор — красава, спасибо за обзор, я бы так не смог, но для понимания пользы от этой подификации мне не хватает информации из обзора и отзывов пользователей, разбирающихся в данной предметной области, и вполне понятны первые два замечания, ведь таких пользователей гораздо больше на упомянутых ресурсах. И их там не просто больше, среди них есть разработчики, проектирующие драйверы, заказывающие изготовление печатных плат в Китае и потом продающие их, то есть, несут ответственность за свои изделия, имеют огромные опыт и знания, могут внести интересные замечания и предложения.

USBISP – заливаем собственную прошивку в фонарик

Наверняка у многих имеются фонари фирмы Convoy, они давно зарекомендовали себя как недорогие и качественные источники света. Но мало кто знает, что с помощью программатора за $3 и клипсы за $3 можно залить в некоторые фонари кастомную прошивку, которая будет иметь больше функций или будет удобнее в использовании. Сразу оговорюсь, что в статье речь пойдет о прошивке фонарей с драйверами на базе микроконтроллера Attiny13a, такие драйвера стоят во всех конвоях S серии (кроме нового S9), а так же в Convoy M1, M2, C8. Многие другие производители так же ставят в свои фонари драйвера с Attiny, к ним данный мануал тоже применим, но следует уделять внимание фьюзам и используемым портам Attiny.

Краткий ликбез

Не все знакомы с устройством современных фонарей, поэтому прежде чем перейти к колдовству, я постараюсь ввести вас в курс дела. Итак, электрическая схема типичного карманного фонарика состоит из следующих частей:

  • Кнопка выключения — у «тактических» EDC фонариков типа Конвоев обычно располагается в хвосте
  • Аккумулятор — обычно это Li-ion банка
  • Драйвер — самая важная часть фонаря, его мозги
  • Светодиод — говорит сам за себя


Драйвер и светодиод

Из всего этого безобразия нас, как вы уже поняли, интересует в первую очередь драйвер. Он отвечает за работу фонаря в различных режимах яркости, запоминание последнего включенного режима и прочую логику. В одноаккумуляторных фонарях чаще всего встречаются ШИМ-драйвера. В качестве силового ключа в таких драйверах обычно используется либо полевой транзистор, либо куча линейных регуляторов AMC7135. Например, так выглядит довольно популярный драйвер Nanjg 105D:

Микроконтроллер Attiny13a содержит в себе прошивку, которая определяет логику работы фонаря. Далее я покажу, как можно залить в этот микроконтроллер другую прошивку, чтобы расширить функционал фонаря.

Предыстория

Сейчас на рынке представлено поистине огромное количество карманных EDC фонариков, и, что характерно, каждый производитель норовит изобрести свою собственную прошивку с собственным уникальным™ управлением. Из всех существующих решений мне больше всего нравилась прошивка, с которой до недавних пор поставлялись фонари Convoy с драйвером Nanjg 105D. Она имела 2 группы режимов (1 группа: Мин-Средний-Макс, 2 группа: Мин-Средний-Макс-Строб-SOS). Смена групп в ней осуществлялась интуитивно просто: включаем минимальный режим, спустя пару секунд фонарь моргнёт — кликаем кнопкой, и группа режимов переключена. С недавних пор Convoy начал поставлять свои фонари с новой прошивкой biscotti. Она имеет больше возможностей (12 групп режимов, возможность включения-отключения памяти последнего режима, запоминание режима в выключенном состоянии (т.н. off-time memory)), но у нее есть несколько жирных минусов, которые лично для меня перечеркивают все достоинства:

  • Сложное управление. Чтобы сменить группу режимов нужно помнить наизусть шаманскую последовательность кликов кнопкой
  • Off-time memory не работает при использовании светящихся кнопок (например, таких)
  • Много бесполезных групп режимов, отличающихся лишь порядком следования

Когда у меня накопился приличный зоопарк фонарей с разными прошивками, но одинаковыми драйверами, я решил унифицировать их, залив всем одну и ту же прошивку. Все бы ничего, но нельзя просто так взять и перешить Nanjg 105D на старую добрую прошивку с двумя группами, потому что в свободном доступе ее нет, и производитель установил запрет на считывание дампа памяти микроконтроллера, т.е. оригинальную прошивку взять неоткуда. В репозитории прошивок для фонарей аналога данной прошивки нет, поэтому у меня остался один выход — написать все самому.

Встречайте Quasar v1.0

Взяв за основу прошивку luxdrv 0.3b от DrJones, я сваял собственную с блекджеком и лунапарками. Я постарался сделать ее максимально похожей на стоковую прошивку Nanjg 105D и более масштабируемой. Что может мой Quasar:

  • 2 группы режимов: (Минимальный — Средний — Максимальный — Турбо) и (Минимальный — Средний — Максимальный — Турбо — Строб — Полицейский строб — SOS)
  • Строб злой (частота вспышек около 12Гц)
  • Новый режим — полицейский строб — делает прерывистые серии по 5 вспышек, режим может быть полезен велосипедистам, т.к. повышает заметность
  • Переключение групп осуществляется как в заводской прошивке: включаем первый режим, ждем пару секунд, кликаем сразу после того, как фонарь моргнет
  • Путем модификации исходников можно добавить до 16 групп, в каждой группе можно задать до 8 режимов
  • Используется традиционная on-time память, можно использовать светящиеся кнопки без потери функциональности
  • При разряде аккумулятора ниже 3В фонарь начинает сбрасывать яркость, но полностью не отключается — используйте аккумуляторы с защитой, если боитесь их убить.
  • Удобная фича для проверки текущего уровня аккумулятора: в любом режиме делаем 10-20 быстрых полу-нажатий кнопкой до тех пор, пока фонарь не перестанет включаться. После этого фонарь сделает от 1 до 4 вспышек, каждая вспышка означает уровень заряда соответственно

Ссылка на основную публикацию