Доработка звукового датчика наполнения бочки водой

Выбираем датчик уровня воды в резервуаре и емкости

Для автоматизации многих производственных процессов необходимо контролировать уровень воды в резервуаре, измерение проводится при помощи специального датчика, подающего сигнал, когда технологическая среда достигнет определенного уровня. Без уровнемеров невозможно обойтись и в быту, яркий пример этому – запорная арматура бачка унитаза или автоматика для отключения насоса скважины. Давайте рассмотрим различные виды датчиков уровня, их конструкцию и принцип работы. Эта информация будет полезной при выборе устройства под определенную задачу или изготовлении датчика своими руками.

Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.

Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.

Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.

Измерение уровня радарным датчиком

Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.

Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Делаем датчик уровня воды в резервуаре своими руками

Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.

Схема управления водозабоным насосом

Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня — на замыкание, максимального — на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

  • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
  • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
  • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.

Набор для сборки датчика уровня

  • Цена: US$ 3.56
  • Перейти в магазин

Всем привет. Сегодня речь пойдет об очень простом наборе для самостоятельной сборки прибора, для контроля уровень воды. Данный набор может с успехом распаять школьник 5-7 класса за один вечер. Можно конечно сделать и полностью самостоятельно, включая плату, но я решил сэкономить время, поэтому был заказан набор.

Набор был приобретен с целью хоть как то автоматизировать набор воды в бочку на даче. При чем это не совсем бочка, а скорее труба, уходящая вниз на 2.5-3 метра, поэтому запасы воды там приличные (для простоты пусть будет бочка). Задумка была простая, пока нет регулярного водоснабжения электроклапан открывается и набирает в бочку воды по заданный уровень. Расход воды ведрами по необходимости и автоматический долив в бочку. Для того что бы клапан часто не срабатывал от колебаний воды, задумано несколько уровней. Нижний при котором включается клапан и верхний при котором выключается. Т.е. есть определенная мертвая зона при которой расход воды есть, а подача воды в бочку пока отсутствует. Кстати, эта мертвая зона и есть фактически такое понятие, как гистерезис.
В прошлом году эту функцию выполняло такое пардон устройство, как поплавковый механизм из бачка унитаза. Работало исправно, изредка засорялось, поскольку вода поступает по трубам прямиком из реки. Но в итоге зиму не пережило, поскольку было выполнено из пластмассы и развалилось от мороза.
Данный набор был призван заменить вышедший из строя механизм.

Читайте также:  Как резать стекло стеклорезом

По мере хранения собранной платы и ожидании дачного сезона, была произведена попытка применить собранную плату на производстве, вот на такой установке.

Это просто большая кастрюля с нагревателем типа ТЭНов мощностью 27 КВт. Продукцию достают из холодильника целыми поддонами и закладывают в кострюлю. Надо все это нагреть до 90 С. Представляете сколько электроэнергии тратится ежесуточно?!


Продукция между прочим представляет из себя свиные желудки и кудрявку (часть кишков).
Насколько я знаю желудки чем то набивают и употребляют в пищу, с кишками примерно то же самое — в том числе и колбасы с сосисками.

Это дело варится и повторно замораживается. Далее отправляется в Китай. Вот так вот, круговорот товара в природе. Мы им натуральные субпродукты, а в ответ электронику.

Назрел вопрос перевести нагрев кастрюли на пар. Так экономнее и мощность выше. Производительность вырастает в разы. Вот тут и потребовался датчик уровня, что бы никого паром не обварило и пар подавался только тогда, когда в емкости присутствует хотя бы минимальное количество воды.

Однако я вовремя спохватился и отказался от окончательной установки, хотя испытания показали работоспособность платы. Применять на производстве самоделки противопоказано. Поэтому нашли менее оперативно нужный прибор, который выполняет те же функции, но имеет еще и сертификат. Принцип работы заводского прибора практически соответствует набору с интернет магазина и в конкретном случае выполняет те же функции.
Этот прибор отечественного производства Овен САУ-М7.

В небольшом пакетике «кучка» деталей, плата и провода.

По номиналам я не сортировал, просто разложил для наглядности.

Схема не простая, а очень простая. Используется 4 элемента 2И-НЕ, при чем два из них выполняют функцию триггера. Он нужен для формирования петли гистерезиса.
Контакты 1 и 2 разъема J3 дают сигнал о нижнем уровне и включают реле. Контакты J4 1 и 2 — верхний уровень и аварийный, при срабатывании любого из них реле выключается. Срабатывание реле дублируется зажиганием светодиода. Схема уверенно срабатывает на водопроводную воду и так же уверенно на воду после водоподготовки, в которой солей меньше.
Я собирал плату практически не глядя в схему, разве что номинал резисторов посмотрел.
Перепутать выводы маловероятно и даже установить такие детали, как разъемы или транзисторы неправильно помешает нанесенная шелкография.
Единственный минус при монтаже — я перепутал местами светодиоды. Но это так, мелочи, на работоспособность не влияют.

В качестве датчиков были применены самодельные датчики уровня кондуктометрического типа. Примерно вот так они выглядят в сборе:

На плате со стороны установки деталей нанесена шелкография, вполне качественная.

Процесс распайки деталей вам не будет интересен, поскольку я не являюсь сборщиком и не владею особенностями тех процесса по сборке плат. Что в руку попалось с краю, то и запаивал.
Печатная плата со стороны пайки покрыта защитной маской. Металлизации нет. Плата односторонняя.


Использовал припой типа ПОС 61 с канифолью. Насвинячил немного.

Провода питания зафиксировал герметиком, что бы не обломались на выходе из отверстий. Провода, что шли в комплекте, мне показались слишком короткими.

Плату помыл растворителем со спиртом и покрыл слоем Plastik 70. Сразу заметил разницу между моими прежними платами и этой. Поверхность блестит и контакты покрыты слоем пленки.
Выявился некоторое неудобство, которое на самом деле является плюсом. Хотел снять видео о работе платы с использованием мультиметра, а получил проблему в виде того, что цупы, банально не продавливают покрытие защитное. Поэтому в видео отсутствует мультиметр.

Видео демонстрации работы платы:

Upd: пока писал обзор, на страницу с товаром даже не обращал внимание, как обычно. И только после написания обзора обратил внимание на товар. Плата не совпадает с той, что мне прислали и судя по комментариям многим высылают два разных варианта платы. На функционале это не сказывается. Обе платы работоспособны.

Итоги: Простейший набор, доступен для школьников, так же имеет практическое применение. К покупке рекомендую. Осадок небольшой остался из за того, что плата пришла не та, которая в описании.

В моем случае оказались лишними провода. Вероятно они планировались для вывода из платы светодиодов на переднюю панель и подключения источника питания.

Как сделать сигнализатор-датчик уровня воды
из звуковой сигнализации двери

Любители принимать ванны сталкиваются с необходимостью постоянного контроля уровня воды при ее наполнении. Благодаря наличию сливного отверстия вода не затопит помещение, но ее бесполезный расход зафиксирует счетчик, что увеличит стоимость коммунальных услуг.

Для того, чтобы избавиться от наблюдений и сэкономить средства можно воспользоваться звуковым сигнализатором, который оповестит, когда уровень воды при наполнении ванны или любой другой емкости, достигнет необходимого.

Существуют готовые сенсорные звуковые сигнализаторы, но стоят они в несколько раз больше и питается от батареи типа «Крона», которой хватает ненадолго.

Можно было самому сделать емкостной датчик уровня воды, но гораздо проще переделать звуковой магнитный сигнализатор для двери, стоимостью в 1$, дополнив магнитиком, пружинкой, нитью и поплавком.

Изготовление звукового поплавкового датчика уровня воды

Для оповещения достижения заданного уровня воды при наполнении ванны я за пару часов переделал звуковой охранный сигнализатор для дверей под эту задачу.

Как разобрать сигнализатор

Сначала надо снять крышку батарейного отсека, сдвинув его вдоль корпуса сигнализатора. Далее нужно снять вторую часть крышки, в которой установлен звуковой излучатель.

При внешнем осмотре крепежных элементов не наблюдалось. Предположил, что крышка держится на защелках. Но попытка снять ее, освободив защелки, не увенчалась успехом. Оказалось, что крышка закреплена саморезом.

С обратной стороны сигнализатора был наклеен двухсторонний скотч. С помощью иголки было найдено место нахождения самореза, и он выкручен крестовой отверткой.

На фотоснимке показана снятая крышка с громкоговорителем пьезоэлектрического типа. Слева от него видна стойка для самореза. Выводы излучателя были отпаяны и обозначена полярность.

Звуковой сигнализатор разобран и теперь стало понятно, как его переделать под сигнализатор уровня воды. В качестве датчика использовался геркон, представляющий собой герметичную стеклянную ампулу, в которой размещены два контакта. При воздействии магнитного поля, контакты служат магнитопроводом и, притягиваясь, друг к другу, замыкают электрическую цепь. Ведут себя как включатель.

Доработка сигнализатора двери

Решено было вместо штатного магнита с большими размерами, разместить в корпусе небольшой неодимовый магнит. Но мешал геркон и резистор, которые были установлены сверху на печатной плате.

После снятия печатной платы оказалось, что под ней в корпусе имелось достаточно места, для переноса мешающих элементов на сторону с печатными проводниками.

При выпайке резистора у него отвалился один из выводов, пришлось заменить другим. Заодно выяснил, что резистор задает частоту излучения пьезоэлектрического излучателя. Геркон был установлен таким образом, чтобы, магнит замыкал его контакты, находясь в нижнем положении, то есть звука не было.

Неодимовый магнит был взят от отказавшего жесткого диска компьютера. От него с помощью зубила был отколот небольшой кусочек. Острые края закруглены на наждачной бумаге.

Для закрепления магнита на капроновом шнурке на нее был надет отрезок полихлорвиниловой трубки подходящего диаметра и в нее с усилием вставлен магнит. При желании можно трубку опустить на десяток минут в ацетон, тогда она увеличится в диаметре в два раза, а после испарения ацетона уменьшиться до исходного размера.

Пружина растяжения была закреплена в корпусе сигнализатора с помощью, вплавленной в него паяльником металлической скобки. Шнурок был привязан на узел к противоположному ее концу.

Крепление магнита с помощью трубки позволило определить оптимальное место его расположения относительно геркона и заодно ограничить свободу перемещения. После регулировки магнит был приклеен с помощью клея «Момент». На фотографии показан магнит в положении, когда уровень воды не поднял поплавок.

Проверка работы системы показала стабильную ее работу. При натяжении шнурка звук отсутствовал, а при отпускании ее раздавалась сирена большой громкости.

Поплавок был сделан из пластиковой банки подходящего размера. Для крепления нити в крышке банки было установлено ушко, сделанное из полоски нержавеющего металла. Можно использовать и отрезок алюминиевого провода для электропроводки.

Полоска с отверстием была с помощью паяльника вплавлена в крышку банки и загнута, как показано на фотографии.

Для исключения попадания воды внутрь поплавка место вхождения ушка в крышку с внутренней стороны было залито силиконом.

Для того чтобы поплавок при попадании в воду принимал вертикальное положение внутрь банки был помещен груз в виде кусков припоя. Общий вес поплавка составил 50 гр.

Для получения оптимального погружения поплавка в воду, в него добавлялся очередной кусок припоя, пока поплавок не начал плавать в воде, как показано на фотографии.

Для сигнализатора уровня воды над ванной было решено использовать проволочную полку, имевшуюся в углу стены. Поэтому в корпус сигнализатора был вплавлен крючок, сделанный из такой же полоски металла, как и ушко поплавка. Можно было закрепить на кафеле с помощью присоски, но они часто отваливаются, а датчик не герметичный. Поэтому я предпочел этот способ крепления не применять.

Читайте также:  3D голограмма на мобильном телефоне

В сигнализатор были установлены батарейки ААА, и осталось только отрегулировать длину шнурка на требуемый уровень воды. Поэтому шнурок не был привязан к поплавку, а зафиксирован с помощью зажима.

Многократное использование звукового сигнализатора уровня воды в ванной при наполнении ее водой подтвердило эффективность самоделки. При возникновении сирены, сигнализатор выключается с помощью имеющегося штатного выключателя. С тех пор бесполезный расход воды при наборе ванны был исключен.

Автоматическое наполнение емкости водой на садовом участке

Вода на дачном участке – это хорошо. Большой бак с водой на участке – очень хорошо. А когда он сам, автоматически, наполняется – отлично!

И как же сделать такую радость на своем участке? Да очень просто – ставим в емкость обыкновенный, самый простой, поплавковый клапан от бачка унитаза, к которому подведена вода из общей магистральной трубы.

Бак начинает наполняться, как только уровень воды в ней опустится. Вода самостоятельно закрывается, когда уровень воды поднимется: поплавковый клапан ее запирает точно так же, как в бачках унитаза.

У нас на участке смонтирована система капельного полива, вода в нее поступает из бака объемом 2,4 м куб.

Наполнение воды в баке регулируется как раз таким клапаном. Причем вода в бак всегда открыта, даже в наше отсутствие. Это очень удобно, т.к. при работающем капельном поливе (в жаркое время – непрерывно) бак наполняется автоматически. А проложив ленту капельного полива на нескольких грядках, входишь во вкус и прокладываешь ее везде, где требуется полив: все грядки, кустарники (смородина, малина, земляника) и т.д.

Вода из каждого эмиттера (отверстия) капельной ленты вытекает медленно – капает с небольшим интервалом.

Но при увеличении лент на грядках, общий объем воды, вытекающий из бака, значительно возрастает. И тут выявился существенный недостаток этой конструкции: емкость наполняется медленно и не успевает за сливом воды. Чтобы понять, почему это происходит, давайте разберемся с устройством нашего клапана.

Разбираем, и видим, что отверстие, через которое поступает вода очень мало – всего-то 2мм!

Можно его увеличить? Конечно же! Для этого берем дрель, сверло диаметром 7мм и рассверливаем это отверстие.

Почему ограничиваемся 7 мм? Дело в том, что это отверстие как раз и закрывает клапан. И, если мы сделаем его еще больше, то клапан просто не сможет его перекрыть.

Далее собираем клапан и монтируем обратно в бак.

Ставить заднюю крышечку не стоит – через то отверстие тоже пойдет вода в бак.

Такая нехитрая доработка позволит в 2-3 раза сократить время наполнения емкости и поддерживать высокий уровень воды, обеспечивая стабильную работу системы капельного полива.

Денис Григоричев, г. Барнаул

Все комплектующие для монтажа капельного полива на садовом участке можно приобрести в садовых центрах “Сияние” в вашем городе.

Читайте наши статьи, следите за выпусками электронного журнала, да прибудет с вами отличный, здоровый урожай!

Разработка и эксплуатация ультразвукового сенсора наполнения бака

Закончилось лето, и мне хотелось бы поделиться результатами одной интересной работы — а именно разработкой, сборкой, наладкой и эксплуатацией комбинированного ультразвукового датчика. Хочу сразу сказать, что всё устройство собиралось «на коленках», потому что было важно понять, насколько система может быть жизнеспособна. Поэтому не было сделано никакой защиты от дождя, солнца и ветра. Сам прибор был установлен снаружи помещения. Забегая вперёд, скажу, что надёжность оказалась весьма впечатляющей, несмотря на то, что устройство было собрано из остатков оборудования от старых проектов.

Постановка задачи

Задача была поставлена ранней весной — вместе с приобретением в питомнике 120 кустов малины. Как известно, малина очень отзывчива к поливу, но одновременно не любит и избытка воды. Поэтому было решено из подручных материалов собрать систему, которая бы решала следующие вопросы:

1. Управление погружным вибрационным насосом.
2. Измерение уровня воды в 220 литровой бочке.
3. Включение электромагнитного клапана по запросу — начало полива. Отключение производится по сигналу от измерителя уровня воды.
4. По завершению цикла полива запуск цикла заполнения бочки. Отключение производится по сигналу от измерителя уровня воды.

Состав оборудования

— US-100 — ультразвуковой измеритель расстояния. Старший брат знаменитого HC-SR04. Главное отличие — наличие температурной компенсации и возможность работы в режиме передачи данных по UART. По точности сравнить мне их не удалось ввиду отсутствия HC-SR04.
— Плата, оборудованная микропроцессором STM8S003F3P6.
— LCD 2×16, совместимый с HD44780.
— HLK-PM01 — блочный малогабаритный источник питания типа AC-DC. Входное напряжение 220В переменного тока, выходное 5В 600 мА постоянного тока.
— Электромагнитный клапан с установочным диаметром 34 на напряжение 24В постоянного тока. Потребляемый ток достигает 2 А.
— Корпус для основного прибора.
— Корпус для ультразвукового сенсора. Исполнение этого корпуса IP67, и как показала практика, такое исполнение было выбрано не напрасно.

Средства разработки

Хочу сразу сказать, что я являюсь счастливым владельцем двух замечательных плат Arduino Mini. Но увы — ардуинизация сознания для меня закончилась тогда, когда оказалось, что даже с использованием операционной системы реального времени данная плата ну никак не желает работать в качестве Modbus RTU slave с тайм-аутами меньше 100 мсек на скорости 57,6 кБит при запросе всего 64 регистров и при этом делать хоть какую-то полезную работу. Именно поэтому была выбрана плата на платформе STM8 с гораздо меньшим количеством ресурсов. В качестве среды программирования и отладки был выбран IAR Embedded Workbench for STM8. Данная среда прекрасно работает с программатором — отладчиком ST-LINK V2. Программатор имеет интерфейс USB и подключается к отлаживаемому изделию всего 4-мя проводами. При этом зачастую тока от отладчика достаточно для питания отлаживаемой платы. Я немного старомоден, и поэтому мне нравится иметь возможность онлайн — отладки. Я просто хочу видеть, что делает мой код в режиме исполнения. Этот подход не раз экономил время и деньги.

Операционная система

Интересный факт: известный российский зодиакальный производитель выпускает ПЛК без операционной системы реального времени.

В самом начале пути я встал перед выбором — использовать или нет операционную систему реального времени для микропроцессора, обладающими такими ресурсами. И выбор был сделан весьма неожиданный — ChibiOS RT v2.6.9. Не буду в этой публикации рассматривать все особенности этой системы — только отмечу, что создание двух потоков с одинаковыми приоритетами заняло 2547 байт флеш — памяти и 461 байт оперативной. Собственно, немало — но результатом этой потери стало то, что теперь я имею 8 — разрядный недорогой микроконтроллер, который управляется операционной системой реального времени. И следовательно, я могу управлять исполнением моих задач так, как мне необходимо.

Ход работ: сборка прототипа и написание программы

Сборка прототипа прошла достаточно быстро, особых проблем не возникало. Что получилось в результате, показано на картинке ниже:

При программировании единственной проблемой было то, что для дисплея и ультразвукового сенсора не было найдено готовых драйверов. Итог — пришлось писать самому. Результатом работы стало стабильно работающая программа, исходный код которой вы можете найти в архиве.

Внешний вид прототипа, установленного в корпус, показан ниже. Как раз виден процесс тестов в домашних( читайте — тест для сферического процессора в вакууме) условиях. Именно в таких режимах обычно тестируют ардуиноводы, и результатом являются отзывы об исключительной надёжности получаемых «решений». Поведение моего изделия в таком тесте было просто идеальным — никаких сбоев или отклонений замечено не было.

Ход работ: монтаж и запуск системы

Для монтажа было выбрано строение, расположенное в непосредственной близости от объекта управления. Как я говорил выше, никакой защиты от атмосферных осадков не было предусмотрено. В конце концов, затяжной ливень сделал своё дело — но об этом немного позже. Ниже на картинке показана установка ультразвукового датчика.

Устройство управляет включением системы капельного полива, причём управляется от программируемого логического контроллера. Контроллер имеет встроенную шину 1-wire с возможностью подключения до 128 устройств на один коммуникационный порт. Датчик влажности комбинированный, емкостный, работает на частоте 80 МГц и имеет как раз интерфейс 1-wire. Вместе с влажностью передаёт величину освещённости на уровне установки сенсора. Данные устройства в этой публикации не рассматриваются.

Ход работ: эксплуатация

Подав питание, было приятно увидеть, что алгоритм, заложенный в программе, работает так, как и хотел разработчик. Блок измерил расстояние до воды, определил, что бочка пустая, и включил насос для заполнения. В процессе заполнения отклонения показаний датчика уровня составили не более 15 мм, что достаточно приемлемо. Заполнив бочку, отключил насос. Теперь система готова к началу процесса полива. На начальном этапе всё было гладко и красиво — но многолетний опыт подсказывал, что самое интересное будет впереди.

Читайте также:  3D гипер шар из бумаги - в технике модульное оригами

Ход работ: проблемы и решения

Как оказалось, установка дискового фильтра для очистки воды оказалась совсем не лишней — через 3 недели эксплуатации фильтр оказался забит настолько, что просто не пропускал воду в систему. Картинка ниже.

Несмотря на то, что вода прозрачная, она оказалась достаточно агрессивной для стенок железной бочки. Бочка начала ржаветь, и результат вы видите ниже. Решение оказалось простым — берём и красим бочку изнутри в два слоя прочной эмалью.

Но это ещё не всё — как оказалось, бочка с водой очень привлекательна для разного рода водорослей, и они охотно селятся в ней. В моём случае получилась даже вот такая небольшая экосистема — картинка ниже.


Решение тоже простое — как известно, для развития водорослей необходим солнечный свет. Просто накрываем бочку непрозрачным материалом. Мне не удалось полностью прекратить доступ света, и поэтому раз в месяц необходима профилактическая промывка емкости.

Но решение одной проблемы вызывает появление другой — на накрывающем покрытии стал собираться конденсат. И если бы не исполнение IP67 сенсора, то очень быстро блок пришёл бы в негодность. К слову сказать, несмотря на кажущуюся нежность конструкции, ультразвуковой датчик показал себя весьма положительно. Но пришлось его доработать- поставить кольцевой отражатель для того, чтобы компенсировать ложные эхо — сигналы на некоторых дистанциях. По видимому, эхо-сигналы появляются в результате отражения пачки звуковых импульсов от стенок бочки. В моём случае эта дистанция составила 230-250 мм.

Заключение: дальнейший путь

Как я упомянул выше, ливень поздней осенью прекратил тестирование — резкий хлопок ознаменовал собой выход из строя терминального соединителя питания 220 В. Да и наступило то время года, когда отпала необходимость в самом устройстве.

Анализируя полученный материал, я пришёл к неожиданному выводу — нет необходимости в приборе в таком виде. Если доработать сам сенсор, и дать ему доступ к стандартным протоколам обмена типа modbus rtu — то можно будет управлять прямо из программы контроллера, не используя никаких промежуточных звеньев. Я также рассматривал вариант использования шины 1-wire — но передачу 4-х 16 разрядных величин лучше делать на более скоростном варианте протокола обмена.

В заключение хочу сказать, что если эта публикация вызовет интерес, то я с удовольствием продолжу серию публикаций про проекты, которые собраны мной с паяльником и программатором в руках.

Устройство для контроля уровня воды – уровнемер, бакомер: ультразвуковой датчик + микроконтроллер

Я большой любитель русской бани. Летом прошлого года, принимая банные процедуры, я остался без холодной воды. Почему так получилось? Дело в том, что бак для холодной воды установлен на чердаке бани.
Воду, в бак закачиваем насосом, а сливается она самотеком по трубам. Контролировать количество воды, как при наполнении, так и при использовании задача непростая – бак скрыт под крышей бани. По струе воды тоже сложно определить, сколько воды осталось – я не определил .
Нужно устройство для контроля уровня воды – уровнемер.

Содержание / Contents

↑ Метод измерения

↑ Датчик

Датчик представляет из себя печатную плату. На которой установлены передающий и приёмные пьезоэлементы. На плате собрана схема формирования зондирующей пачки импульсов с частотой 40кГц, которая подается на драйвер, выполненный на преобразователе уровня TTL в RS232.
Да-да, вот такое необычное применение. Не совсем правильное, но дешевое и работоспособное решение позволяющее обойтись без дополнительного высокого напряжения для раскачки излучающего пьезоэелемента. Также плата содержит усилитель для приемного пьезоэлемента и небольшой управляющий микроконтроллер. У датчика четыре ножки управления: питание +5 Вольт (VCC), вход запуска (Trig), выход (Echo), и земля (GND).

На вход Trig мы подаем импульс 10 мкС, на выходе Echo, при получении датчиком эхо-сигнала (отражения), будет сформирован импульс длительностью пропорциональной времени прохождения звука от датчика до отражателя и обратно. Это время мы делим на два и умножаем на скорость звука в воздухе, среднее значение 340 м/с – получаем расстояние до отражателя (объекта). Ниже диаграмма работы датчика.

↑ Схема

↑ Конструктив



Из полезного — отрезал от теплосчетчиков термодатчики, пока лежат на полке. Понравился конструктив теплосчетчика. Корпус состоит из двух половинок. В нижней половинке, устанавливаемой стационарно, стоят две платы с клемниками для внешних подключений и колодка для соединения с платой в верхней части корпуса. А в верхней части корпуса стоит основная плата счетчика. Вот этот корпус и будем использовать с такой же идеологией.

Для верхней части корпуса была изготовлена печатная плата, в нижнюю часть, плату делать я не стал – собрал все на монтажной плате.


Питается устройство от импульсного блока питания некогда служившим для питания ADSL-роутера. После был списан на пенсию за слабость свою, после ремонта вновь введен в строй, но уже для питания моего устройства.

↑ Передняя панель


Поскольку минимальный формат печати оказался А3, то наклеек я заказал три варианта в двух экземплярах. Мне больше понравился темный. Ну, или если надоест, то всегда можно заказать новую наклейку.

↑ Монтаж датчика


Корпус закрепил на крышке бака.

Просверлил отверстия для установки датчика.


Припаял кабель, электролитический конденсатор и залил все термоклеем.

↑ Описание работы

При подаче питания на схему сначала проходит тестирование семисегментного индикатора и линейки светодиодов. Если прибор не калиброван, то на индикаторе мы увидим, лишь измеренную дистанцию. Линейка светодиодов не работает, так же не доступна функция управления наполнения и слива бака. Больше про работу не калиброванного прибора рассказывать нечего.
Ну, так давайте откалибруем его!

↑ Калибровка

Вход в режим калибровки происходит после теста индикатора при удерживании обеих кнопок. После отпускания кнопок на индикаторе отображается дистанция до дна в миллиметрах, а на линейке светодиодов горит нижний светодиод, символизируя режим калибровки нуля.

Для калибровки параметра на пустом баке нажимаем кнопку «Слить», переходим к следующему этапу – калибровке максимального уровня. На индикаторе так же отображается дистанция в миллиметрах. На линейке горят все светодиоды, символизируя режим калибровки максимального уровня. Дальше возможны варианты – либо мы наполняем бак на сто процентов и после этого жмем кнопку «Наполнить» для установки верхнего уровня. Или можно просто поднести отражатель к датчику на предполагаемый максимальный уровень.

После калибровки уровней переходим к вводу объема бака. Кнопкой «Наполнить» меняем значение разряда, а кнопкой «Слить» меняем разряд и так все четыре разряда по очереди. В калибровке предусмотрены две блокировки. Не критическая – если объем не введен, то устанавливается объем 100, соответственно отображение будет в процентах или в литрах, если бак при этом на сто литров. Вторая — критическая блокировка, поскольку расположение датчика у нас верхнее, то значение верхнего уровня не может быть больше нижнего.
В этом случае прибор калибровку не проходит, а просто отображает дистанцию.

↑ Описание работы и видео в действии

После успешной калибровки прибор отображает объем воды в литрах и уровень в десятках процентов на линейке светодиодов. Также становятся доступными функции наполнения и слива бака. В приборе предусмотрено автоматическое наполнение, которое неактивно после подачи питания. Для активации автоматического наполнения необходимо нажать кнопку «Наполнить» после чего бак наполнится на 90%.

При наполнении бака, уровень на светодиодной линейке будет отображаться как при зарядке аккумулятора в телефоне. Повторное наполнение включиться автоматически при отпускании уровня ниже 10%. Наполнение бака можно запускать в любой момент. Для остановки наполнения нужно нажать кнопку «Слить» во время наполнения. Функция слива предусмотрена для вывода бака из эксплуатации на зимний период. Может быть, и не очень нужная функция, прибор опытный трудно вот так все сразу продумать, пускай пока будет.

Для активации слива нажимаем кнопку «Слить», включается реле включения клапана слива. Реле выключается при достижении нулевого уровня после задержки необходимой для слива воды с трубопровода. Теперь, во время слива, батарейка — бак будет уже не заряжаться, а разряжаться. После активации слива, режим автоматического наполнения выключается, повторно включить его можно нажав на кнопку «Наполнить».

Вот собственно и все, смотрим демо-видео.


↑ Файлы (обновлено 05-04-2014):

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Ссылка на основную публикацию