Зарядное устройство для Li ion аккумуляторов шуруповерта своими руками

Технический блог

Если у Вас есть (или завалялся у знакомых) старый шуруповёрт на Ni-Cd и все аккумуляторы сели, да ещё зарядное сломалось (сгорело), закажите на али плату MT3608 за 40р, поищите старое зарядное устройство от сотового телефона (у всех навалом) и старые аккумуляторы от ноутбука (из них нам нужны аккумуляторы Li-Ion 18650).

Сегодня мы будем переделывать старый шуруповёрт с никель-кадмиевых аккумуляторов на литий-ионные, и соответственно его зарядное устройство.

Всё легко переделывается. Начнём с аккумуляторов.

Если шуруповёрт был на 12В, нам будет нужно 4 аккумулятора 18650 (16.8В максимум), если на 14.4В — 5 шт (21В максимум), если на 18В — то 6 шт (25.2В максимум). Запас прочности электродвигателя и других механизмов в шуруповёрте большой, а нам повышение мощности не помешает.

Сначала тестируются аккумуляторы 18650 Li-Ion, если есть из чего выбирать, подбираются с одинаковой ёмкостью. Дорого и точно это можно сделать с помощью прибора BT-C3100 V2.2 или аналогичного. Примерная ёмкость аккумуляторов 18650 из ноутбуков 1800-2200 мАч, иногда нужно делить на 2 ёмкость, написанную на корпусе аккумулятора. А так достаточно зарядить Li-Ion 18650 аккумуляторы до 4.2V в любой подходящей к ним зарядке с ограничением по напряжению, дать одинаковую нагрузку и через одинаковое время замерить на них напряжение. Если упало до одинаковых величин, то нормально. Например, нагружаем полностью заряженный 18650 на лампу 12В от автомобиля, и через минуту меряем, сколько осталось от 4.2В. Если примерно одинаково, аккумуляторы подходят.

Из корпуса сменного аккумулятора выкидываем старые севшие/замкнувшие Ni-Cd аккумуляторы, и запаиваем вместо них Li-Ion на требуемое нам напряжение. У самих аккумуляторов Li-Ion лучше оставить плоские соединители от ноутбука, но, если всё же будете паять к Li-Ion провода, место пайки охлаждайте обдувом, паяйте быстро с флюсом или кислотой, чтобы уменьшить время нагрева поверхностей аккумулятора, во избежание выхода из строя. Провода для пайки берите от старого компьютерного БП, или толще.

Проверяем, как крутит шуруповёрт, обычно это повышение мощности на 20-40% и уменьшение веса сменного аккумулятора.

Теперь переходим к переделке зарядки, особенно, если она сгорела, или её нет. У разных фирм они разные, Bosch, Shturm, Hitachi, всё разное. Из корпуса зарядки можно достать всю начинку, кроме клеммной колодки. По большому счету, нам нужна только клеммная колодка для подключения сменного аккумулятора. Конечно же, в корпусе всё будет лучше. Мне было слишком много тока от тяжелого трансформатора, и он был тяжел, поэтому я нашел ему лучшее применение (в лабораторный БП).

Припаиваем выход зарядного для сотового к плате MT3608 на VIn контакты, плюс, минус. Включаем, подкручиваем резистор до нужного нам напряжения на выходе, это 16.8, 21 или 25.2В соответственно, какой у вас аккумулятор Li-Ion.

MT3608 — это Step Up (повышающий) конвертер напряжения с широтоимпульсной модуляцией, на обычных платах выходной конденсатор нужно перепаять на большой контакт выхода VOut+ и соответственно зачистить землю рядом с ним для припайки конденсатора. Это недоделка китайцев, плата хуже работает с завода..

Делаем ограничение тока заряда, для этого нам нужен резистор 5-15 Ом и самый простой и мелкий диод. Припаиваем провод плюса VOut+ напрямую к клеммной колодке на плюс аккумулятора. А VOut- через резистор в минусовом проводе. С измерительной точки резистора диод (анодом) мы припаяем (катодом с полоской) на сигнал FB микросхемы, это 3-й контакт MT3608, мелко, но он прозванивается на потенциометре с другой стороны платы, куда легче паять.

Подключаем аккумулятор на зарядку и проверяем ток заряда, это будет от 50 мА (15 Ом) до 200 мА (5 Ом). Соответственно ток с сотовой зарядки будет, к примеру 50мА*(21В/5В/КПД) =300мА, а для 200мА*(21В/5В/КПД)=1200мА (может быть слишком большим, не каждая сотовая зарядка это потянет). Проверяем зарядку, если она греется или напряжение с неё проседает с 5В до 2.5В, то следует уменьшить ток, во избежание перегрева.

Вы спросите, почему такой маленький ток зарядки, ведь будет долго заряжаться.. Первый момент, при больших токах заряда, близких к 1.0C (С-ёмкость Li-Ion аккмулятора), время заряда около часа, аккумулятор точно умирает через 1-2 года таких зверств. Второе, даже старые Li-Ion аккумуляторы имеют свойство восстанавливаться при низких токах зарядки (если конечно химия не потекла и не вздулись), и зарядка низким током точно продлит жизнь аккумулятора.

Плюсы: бОльшая ёмкость Li-Ion аккумуляторов, повышенная мощность шуруповёрта, лёгкий вес, бОльшее время службы. Минимум переделок, легкодоступные детали. Если трансформатор в зарядном рабочий, то это бонус (для лабораторного БП).

Минусы: долгое время полного заряда (10-20 часов). Крайне не желательно сажать Li-Ion аккумуляторы ниже 3V на ячейку, то бишь делать полный разряд (когда шуруповёрт крутит значительно слабее), Li-Ion аккумуляторы намного ранее теряют ёмкость на холоде, уже при 0 градусов шуруповёрт мало проработает (Можно одеть перчатку или платок или шарф только на аккумулятор шуруповёрта для непродолжительной работы на холоде, или отогревать только аккумулятор в помещении на отопительной батарее).

Крайне не советую покупать дешевые яркие китайские аккумуляторы в магазинах, их ёмкость значительно меньше заявленной! Уж лучше на али взять NCR18650B Li-Ion 3400 мАч Panasonic (4шт — 1100р), они реальные.

Как-то мне попалась очень слабая китайская зарядка от сотового. Написано 5В, 450мА. Даже при 21V 50 мА, MT3608 перегружало зарядку и напряжение на выходе падало до 2В, зарядка закипала. Что пришлось переделать:

Сначала я сделал ограничение напряжения начала преобразования Uвх для MT3608 (чтобы конвертер не переводил БП зарядного в состояние 2В 2А, когда всё начинало сильно грется и сгорать). На схеме из простых деталей резистор R2 можно заменить подстроечником на 1-10-100кОм (оптимально 10к и R1 10к тогда). Это дало возможность заводится StepUp конвертору только от повышенного входного напряжения, максимальный ток для китайской зарядки был при напряжении 4.3 В, если чуть повысить подстроечником, работа конвертера прекращалась и напряжение подскакивало до 5В.

Ещё захотелось поднять зарядный ток, 21V 80 мА было мало..

Чем выше напряжение на вторичной обмотке высокочастотного трансформатора преобразователя БП зарядки, тем больше мощности можно снять при одинаковом токе (а максимальный ток зависит от сечения провода), но можно дойти до перенасыщения или перегрева трансформатора, и схема БП может уходить в защиту или сгорать..

На выходе в БП зарядки есть оптрон обратной связи и стабилитрон на 3-4 Вольта или резисторы для стабилизации 5.2В. Мне повезло и попалось зарядное в том числе и с защитным стабилитроном на 7.5В, который я запаял вместо измерительного стабилитрона, и получил на выходе зарядного 9В. Выше 10В зарядное для сотового лучше не разгонять, обычно на 11-12 вольтах идёт срыв стабилизации..

В итоге подкрутил ограничение потребления входного напряжения на 8.2 вольта, получил на выходе конвертера 21V 140мА, в итоге 13 часов заряда для моих 1800мАч аккумуляторов 18650 нормально.

Тэги: из подручных деталей, можно везде найти, легкодоступные, легко переделать, простота, проще, когда ничего нет.

Оставляйте комментарии, делитесь опытом, советуйте, у кого что получилось, как лучше переделать.. Если снимите видео по переделке, выложите сюда ссылку..

Самодельное зарядное устройство для литий ионных аккумуляторов шуруповерта

В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A . Смотрим даташит-ток зарядки -1,5А.

Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.


Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
Плата на LM2596 имеет аналогичные параметры, только ток до 3 А.

Перечень инструментов и материалов.

-адаптер 22012 В, 3 А -1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на XL4015E1 или на LM2596 -1шт;
-соединительные провода -паяльник;
-тестер;
-пластмассовая коробка для плата заряда -1шт;
-минивольтметр -1шт;
-переменный резистор (потенциометр) на 10-20 кОм -1шт;
-разъем питания для аккумуляторного отсека шуруповерта -1шт.

Шаг первый. Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.

На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Читайте также:  Вязаный кот - игрушка для ребенка своими руками.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй. Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.


Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CC/CV.
Напряжение холостого хода на выходе штатное зарядного было 27 В, это вполне подходит для нашей зарядной платы. Далее все то же как и варианте с адаптером.

Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).

Саму плату CC/CV я поместил в подходящую пластмассовую коробку, выведя провода наружу.

Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.

Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.

Подробнее в ролике:

Всем желаю здоровья и успехов в жизни и творчестве!

Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Читайте также:  Простая домашняя красильня

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Зарядка шуруповёрта без зарядного

Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.

А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.

Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.

Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.

Все для переделки шуруповерта на литий с АлиЭкспресс

Все для переделки шуруповерта с NiCd на Li-Ion с AliExpress. В топике краткое руководство и ссылки на все необходимые компоненты.

1) Плата BMS защиты

Нужна для защиты аккумуляторов от переразряда, перезаряда, чрезмерно высокого тока и короткого замыкания (КЗ).

Определяемся с выбором. Если шурик на 12V, покупаем 3S BMS, если на 14V, то 4S BMS. Вообще рекомендую сразу же переделывать на 4S, т.к. и мощность вырастет и будет более полно использоваться батарея. Плата BMS в таком случае обязательна, иначе убьете батарею за пару месяцев! Оптимальный ток защиты по току 30-40А.

Плата 3S BMS:

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Более тысячи заказов, отслеживается.

Плата 4S BMS:

Ссылка на товар (на 30А) — ЗДЕСЬ

Ссылка на товар (на 40А) — ЗДЕСЬ

Ссылка на товар (на 40А) — ЗДЕСЬ

2) Высокотоковые аккумуляторы

Необходимы хорошие банки с токоотдачей не мене 15А. Идеально подходят по соотношению цена/качество LG HE4 2500mah (желтые «бананы»), Samsung 25R 2500mah, Samsung 30Q 3000mah и LG HG4 3000mah («шоколадки»). Для шурика пойдут и перепаковки под брендом Liitokala, Varikore и прочие.

LG HG4 3000mah с приваренными контактами — ЗДЕСЬ

Еще один вариант с приваренными контактами — ЗДЕСЬ

Более нескольких тысяч заказов везде, нормальное качество.

3) Никелевая лента для сварки/пайки

Необходима для соединения аккумуляторов в батарею. Можно использовать и обычный многожильный провод большого сечения, но лента предпочтительнее. Если будете паять, то берите перфорированную ленту!

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

4) Точечная сварка «на коленке»

Представляет собой два ионистора (суперконденсатора), соединенные параллельно. Заряд высокий, позволяет сваривать намертво. Покупать не менее двух, иначе заряда не хватит для нормальной сварки.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

5) Стабилизатор питания

Можно попробовать заряжать от стандартного зарядного устройства, но с большой долей вероятности балансировка работать не будет. Данная плата позволяет заряжать фиксированным током до 5А (лучше не превышать 2А), подключается после выводов стандартной зарядки.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

6) Минивольтметр 0,28 дюймов

Предназначен для контроля заряда. Просто и удобно. Монтируется в батарею.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

7) Держатели (холдеры) для 18650 банок

Больше дополнительный аксессуар. Предназначен для защиты банок от КЗ при падениях собранной батареи. Можно просто обмотать банки изолентой, но это менее надежно.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

8) Запасной электродвигатель для шурика

На всякий пожарный. Пригодится просто для запаса. Стоит копейки, около 6 баксов. Есть с шестерней и без нее.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

9) Качественный припой Kaina

Паять все равно придется, поэтому используйте лучший припой всех времен и народов (без шуток). Сам был удивлен, когда попробовал. С флюсом внутри!

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

10) Отдельный балансир

На случай, если кто купил плату БМС без оной. Выравнивает заряд на всех банках.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

11) Многоштырьковый разъем для отдельной зарядки

На случай, если не устраивает встроенный медленный балансир и планируется зарядка от модельной, типа Аймакс, Айчарджер и прочие. рекомендую вывести и раз в пару месяцев балансировать на такой зарядке. Дополнительно купите заглушку за 50 центов, чтобы грязь туда не попадала! Разъем практически не выступает за пределы корпуса.

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Ссылка на товар — ЗДЕСЬ

Пока на этом заканчиваю. Если тема будет интересна, в следующем топике расскажу как все это соединить воедино, плюс пару лайфхаков использования, 😉

Еще интересное:

Еще одна автоподборка ЗДЕСЬ

Предыдущие подборки ЗДЕСЬ, ЗДЕСЬи ЗДЕСЬ

Еще одна интересная подборка ЗДЕСЬ и ЗДЕСЬ

Либо смотрите в моем профиле ЗДЕСЬ

Первая часть насадок для электроинструмента ЗДЕСЬ

Вторая часть насадок для электроинструмента ЗДЕСЬ

Третья часть насадок для электроинструмента ЗДЕСЬ

Больше интересных товаров по выгодным ценам смотрите в группе GOODSFM

ПЕРЕДЕЛКА ШУРУПОВЁРТА НА ЛИТИЕВЫЕ АКБ

Большинству людей, имеющих шуруповерт на Ni-Cd или Ni-Mn, знакома такая ситуация, когда по истечении продолжительного времени аккумуляторы теряют свою емкость. И не только из-за ресурса жизни батареи, но и из-за эффекта памяти. Смысл его в том, что пролежавший долго разряженный аккумулятор запоминает уровень заряда и впоследствии уже не заряжается до своей номинальной емкости. А держать батарею постоянно заряженной вряд-ли кто-то будет. Некоторые пытаются восстанавливать старые аккумуляторы или собирают из двух плохеньких один нормальный.

Я пошел по другому пути. Сейчас достаточно сильно распространены Li-Ion аккумуляторы. Они не имеют такого эффекта памяти и для тех, кто не каждодневно пользуется шуруповертом идеальный вариант для хранения в не полностью заряженном состоянии. Еще один их плюс в том, что они имеют большую емкость по сравнению никелевыми аккумуляторами при тех же размерах. Для сравнения стандартная АБ была на 1,3 А*ч, а сделанная своими руками 5,2 А*ч. О ней и пойдет дальше речь.

Для начала нужны аккумуляторы. И не простые, а высокотоковые. Они способны отдавать большие токи примерно до 30 А. Все покупки производились на алиэкспресс. Дальше нужна плата контроля АКБ. Она контролирует много параметров, которые представлены в таблице. И также не забываем про плату ЗУ. Выбрал на LM2596. Это действительно хорошее зарядное устройство. Использовал для зарядки сборки из 6 х Li-Ion аккумуляторов (25,2 В; 2800 мА/ч).

Инструкция по настройке ЗУ

  1. Подключаем к БП, у которого напряжение минимум на 1 В выше чем может дать сборка из аккумуляторов. Например, для сборки из 6хLi-Ion надо БП с выходом 26,2В. Выходной ток БП зависит от тока зарядки АКБ.
  2. На ХХ настраиваем нужное выходное напряжение, соответствующее максимальному напряжению АКБ в заряженном состоянии. В моем случае – 25,2 В.
  3. Подключаем АКБ к ЗУ, в разрыв между ними измеритель тока – устанавливаем нужный ток заряда. Я установил 1 А для АКБ с емкостью 2800 мА/ч.
  4. При снижении зарядного тока до 0,1 х Ток заряда крутим средний многооборотник до зажигания синего светодиода – “зарядка окончена”.

Все соответствует корявому описанию)). Работает отлично. Буду использовать для зарядки переделанного шуруповерта. До Самары дошло за 25 дней. Для тех кто не может разобраться в работе светодиодов нашел отличное описание:

Читайте также:  Телефонный ретранслятор с питанием от телефонной линии

Верхний горит пока преобразователь способен отдавать в нагрузку установленный ток (в случае использования как зарядного получается это индикатор фазы СС, как только он погаснет – пошла фаза CV) средний светодиод горит пока ток в нагрузке не опустится до 0.1 установленного, погас – заряд окончен.

Значение 0.1 установлено по умолчанию, при желании корректируется как большую (заряд быстрее, емкость меньше) так и в меньшую сторону (время заряда увеличивается, аккумулятор заряжается полнее) средним потенциометром. Но заряд продолжается и после его выключения, это лишь индикатор, что аккумулятор в принципе заряжен и готов к использованию. Нижний светодиод – просто индикатор работы преобразователя.

charge – этот индикатор горит, пока ток в выходной цепи выше заданного значения. Это значение устанавливается относительно максимального тока. При установке большого максимального тока (единицы ампер) может не получиться установить индикацию на маленький ток (единицы и десятки миллиампер).

Литиевые аккумуляторы

Далее купил 10 литиевых аккумуляторов и собрал из них батареи по 2 штуки параллельно, и затем подключил 5 получившихся блоков последовательно. Соединение аккумуляторов между собой производилось пайкой с помощью предварительно залуженных медных пластин. Для пайки нужно одно основное правило – не перегреть АКБ! Поэтому паять нужно мощным паяльником и как можно быстрее за 1-2с. Если сразу не получилось лучше подождать и не кипятить аккумулятор.

Последствия перегрева могут привести к пожару и ожогам. Будьте осторожны!

У кого имеется точечная сварка – проблем с соединением не будет. В результате собралась батарея на напряжение 21 В и емкость 5,2 А*ч. Подключение АКБ к плате контроля представлено на рисунке.

Далее все упаковывается в корпус и проверяется под нагрузкой.

В стандартную зарядку я встроил модуль на LM2596. Блок питания должен быть на пару вольт больше, чем напряжение заряженной батареи. Выставил напряжение на холостом ходу 21 В. Затем подключил АКБ и выставил зарядный ток 0,8 А. Почему такой? Потому что нашелся блок питания на 24 В с макс. током 0,8 А. Специально приобретать не стал. Пусть лучше дольше заряжается. Это не производственный, а домашний вариант инструмента.

В процессе зарядке выявился небольшой минус. При достижении у аккумулятора напряжения полного заряда ЗУ должно переходить из фазы CC в фазу СV. То есть сначала АКБ заряжается установленным током (0,8 А в моем случае), и при достижении 21 В напряжение поддерживается на этом уровне, а ток постепенно падает до 0,1*Iуст (в моем случае 0,08 А, устанавливается средним потенциометром). На этом процесс зарядки останавливается. На данном модуле об этом сигнализирует средний светодиод, но всего лишь сигнализирует, что аккумулятор готов к работе, но по факту зарядка продолжается, что в принципе не критично. АКБ все равно не перезарядится. А минус состоит в том, что из-за того, что плата контроля имеет свою защиту от перезаряда, она отключает ЗУ не дойдя до фазы CV.

Чтобы это обойти пришлось уменьшить напряжение модуля ЗУ до примерно 20,7-20,8 В. Фаза CV начинается раньше, но в любом случае АКБ заряжается полнее, чем вообще без нее. Если не знать об этом небольшом недостатке, то вы и не заметите разницы в процессе эксплуатации.

Вывод

В целом готовое устройство мне понравилось. По сравнению с тем, что было раньше возникает такое чувство, что этот шуруповерт не посадишь. Стоимость переделки на начало 2017г составляет около 2000 рублей. Специально для сайта Радиосхемы – SssaHeKkk.

Обсудить статью ПЕРЕДЕЛКА ШУРУПОВЁРТА НА ЛИТИЕВЫЕ АКБ

АККУМУЛЯТОРЫ 18650. ПЕРЕВОД ШУРУПОВЁРТА НА ЛИТИЙ


КАК ПЕРЕВЕСТИ ШУРУПОВЁРТ НА ЛИТИЙ

Базовая схема защищённой аккумуляторной батареи

Подробный видеоурок по переводу шуруповёрта на литий

Основные моменты, касающиеся сборки защищённых аккумуляторных батарей для переделки шуруповёрта под литиевые аккумуляторы

ТЕКСТОВАЯ ИНСТРУКЦИЯ ПО ПЕРЕВОДУ ШУРУПОВЁРТА

  • Литиевые аккумуляторы лучше никелевых по многим параметрам: выше токоотдача и ниже просадка напряжения под нагрузкой – шуруповёрт крутит одинаково хорошо как на полной зарядке, так и уже разряженный. Литиевые аккумуляторы не имеют эффекта памяти – их можно ДОзаряжать без ущерба ёмкости (в отличие от никелевых). Саморазряд литиевых аккумуляторов в разы меньше никелевых, шуруповёрт спокойно пролежит полгода и потеряет лишь пару десятков процентов зарядки, тогда как никелевый разрядится в нулину.
  • Напряжение сборки зависит от количества “банок” лития. В полностью заряженном состоянии одна банка имеет напряжение 4.2 Вольта, тогда как рабочее напряжение находится в районе 3.7 Вольта (на этом участке график разряда практически горизонтальный)
  • Количество банок для батареи выбирается следующим образом: посмотрите на ваш старый никелевый аккумулятор. Какое напряжение на нём указано? Подберите количество банок лития таким образом, чтобы их суммарное напряжение было близко к никелевой сборке, или чуть выше этого значения. Напряжение банки лития в расчёте принимаем 3.7 Вольт: 2 банки – 7.4 В, 3 банки – 11.1 В, 4 банки – 14.8 В, 5 банок – 18.5 В. Также можно считать по максимальному – посмотрите на выходное напряжение зарядника для никелевой батареи, это будет напряжение полностью заряженного шуруповёрта. Считаем банки лития как 4.2 Вольта на банку: 2 банки – 8.4 В, 3 банки – 12.6 В, 4 банки – 16.8 В, 5 банок – 21 В. Не бойтесь собирать аккумулятор на Вольт-два больше старого: крутить будет чуть шустрее, мотор от этого НЕ СГОРИТ. Если конечно не зажать его в тисках и не дать полный газ.
  • Плата защиты (BMS) выполняет сразу несколько функций: защищает аккумулятор от переразрядки (литий этого не любит) и защищает от короткого замыкания, спасая вас от взрыва банок. В обоих случаях BMS просто отключает сборку от нагрузки до устранения причин срабатывания. Некоторые модели BMS не уходят с защиты до тех пор, пока вы не подадите зарядное напряжение на плату. Модели BMS с балансировкой банок дополнительно выполняют очень важную задачу: балансируют напряжение банок в батарее во время зарядки, заряжая их до одинакового напряжения, что обеспечивает максимально эффективное и безопасное использование батареи.
  • Заряжать батарею из литиевых аккумуляторов необходимо специальным зарядником, выдающим нужное напряжение и ограничивающим ток, такие зарядники имеют в названии “CC CV”, что означает constant current constant voltage – закон зарядки литиевых аккумуляторов. ВНИМАНИЕ! Плата BMS не является зарядным устройством! Заряжать литиевую сборку необходимо отдельным специальным зарядным устройством, напряжение которого равняется максимальному напряжению сборки: 2 банки – 8.4 В, 3 банки – 12.6 В, 4 банки – 16.8 В, 5 банок – 21 В. Ссылки на китайские зарядные БП я оставлю ниже. Эти зарядники сами отключают батарею по окончанию зарядки. Очень удобно ставить на батарею гнездо стандарта 5.5х2.1 мм, потому что такой штекер стоит на всех зарядных БП.
  • Индикатор заряда батареи чуть-чуть, но разряжает аккумулятор (светодиоды жи) поэтому просто подключить его к сборке нельзя, делать это нужно через кнопку или выключатель. Также можно подключить его напрямую к мотору шурупопвёрта, но желательно через диод. Таким образом, зажав “полный вперёд” вы увидите заряд батареи на индикаторе!
  • Что купить для сборки батареи литиевых аккумуляторов для шуруповёрта?
    • Высокотоковые аккумуляторы, как посчитать количество банок я писал выше. Ссылки на разные аккумуляторы вы найдёте ниже, здесь порекомендую мощные и ёмкие аккумуляторы SONY VTC6. С приваренными полосками для удобной сборки. И обычные банки под самостоятельную сварку/пайку. Чуть дешевле и не такие мощные HG2, ссылка один, ссылка два. У нас такие аккумуляторы можно купить в вейп-шопах.
    • Плата защиты (BMS) соответственно количеству выбранных банок. Ссылки на мощные BMS с балансировкой со схемами подключения есть ниже на странице. Продублирую здесь: 3 банки, 3 банки, 4 банки, 4 банки, 5 банок, 5 банок. Для особо мощных шуруповёртов используйте мощные BMS. У продавца они на разное количество банок
    • Зарядник на соответствующее количество банок, ссылки есть ниже, продублирую здесь: 3 банки 1 ампер, 3 банки 2 ампера, 4 банки, 5 банок
    • Гнездо 5.5х2.1мм для удобной зарядки, ссылка 1, ссылка 2
    • Индикатор заряда на соответствующее количество банок: ссылка 1, ссылка 2.
  • Техника безопасности при работе с литиевыми аккумуляторами играет крайне важную роль! Литиевые аккумуляторы – мощная и очень опасная штука, при неправильно использовании литиевый аккумулятор может бахнуть/загореться. Это может произойти по трём основным причинам: слишком высокая нагрузка, перегрев и выход за пределы по напряжению. Частные случаи:
    • Перегрев – не оставляйте аккумуляторы на солнце!
    • Короткое замыкание – если паяете банки – делайте это максимально аккуратно!
    • Перезарядка – используйте только ЗУ для лития!
    • Переразрядка – не насилуйте аккумулятор!
    • Эксплуатация горячего аккумулятора
    • Механическое повреждение банки
  • Что делать, если аккумулятор всё-таки бахнул? Советы от пожарника Андрея Делона:
    • Литий не потушишь “прям совсем подручными средствами” , он пока не прогорит будет создавать неудобства и о себе громко орать.
    • Если загорелся, самое идеальное это кинуть в кастрюлю и т.п. Чтоб сильно не дымил, засыпать чем ибо (солью, песком, землей, содой).
      НИ В КОЕМ РАЗЕ нельзя тушить водой и пенными огнетушителями.
    • Для тушения лития есть спец средства , порошковые смеси ПС-11, ПС-12 и ПС-13 (обычные огнетушители не работают!)
    • Некоторые порошковые огнетушители и вовсе могут дать обратный эффект, например со смесью ПС-2.

ДРУГИЕ ВИДЕО ПО ТЕМЕ






Несколько советов по переводу шуруповёрта на литий:

  • Зарядное от никеля можно переделать в зарядное для лития при помощи того самого модуля за 70 рублей. Не забудьте настроить ток и напряжение!
  • В комментариях некоторые умельцы пишут, что им удалось переделать батарею как у меня, не отламывая родную защёлку. Дерзайте!
  • Если BMS уходит в защиту при резкой нагрузке, параллельно выходу с платы припаяйте конденсатор на 25V 1000-2200 мкФ, это решит проблему
  • Также для BMS как на видео (3S) можно уменьшить время срабатывания защиты, припаяв конденсатор на 0.47 мкФ (керамический) между S1 и B- . Можно сделать это прямо на плате! (см. фотку)

Ссылка на основную публикацию