Аппарат контактной сварки своими руками из старых ламповых телевизоров

Как создать аппарат точечной сварки самостоятельно, используя старый телевизор

У большинства людей наверняка сохранились древние телевизоры времен СССР. И вы наверняка тоже думаете, что место им только на свалке, или в лавках антикваров.

Но не стоит торопиться – ведь некоторым деталям можно найти достойное применение, даже если телевизор уже давно не функционирует. Нужно лишь немного фантазии, и, конечно, полезные советы. Следуя им, вы сможете смастерить аппарат для точечной сварки.

Такой аппарат пригодится для работы многим мастерам. Работать можно с материалом до 0.8 миллиметров. Так что такое нехитрое устройство вполне подойдет для простых видов ремонта, и также, например, кузовного.

Введение

Развеем сомнения о том, что изготовленный своими руками прибор из телевизора сильно отстает от заводского, а вся затея – это пустая трата времени. Напротив, он даже выигрывает по многим параметрам.

Во-первых, нехитрая конструкция значительно реже ломается, и, в случае чего, ремонт будет выполнить гораздо проще.

Стоит один раз сделать на совесть, и такой аппарат будет долгое время служить верой и правдой, не требуя практически никаких особенный условий хранения.

А еще, к его достоинствам можно отнести то, что стоимость несомненно существенно ниже нового, купленного в магазине. И все это даже при условии, что некоторые детали вам нужно будет докупить.

Читайте подробную инструкцию про создание этого устройства самостоятельно и без особых усилий из деталей старого телевизора. Следуйте нашим советам, и у вас не возникнет никаких вопросов. Ниже есть все чертежи, нужные вам пригодиться в процессе сборки.

Кроме них, для создания панели регулирования и силового блока вам будут нужны нехитрые детали, которые можно достать в магазине, купить у других умельцев.

Общая информация

Перед тем как мы начнем изготавливать наш аппарат, правильнее будет пояснить, в чем же заключается сама точечная сварка. Проще говоря, это способ сваривания, при котором сам шов состоит из мелких точек.

Сам процесс происходит так, что металлические электроды сжимают металл, и под воздействием температуры образуется сам шов.

Скорость ручного аппарата составляет примерно одна точка в секунду, в то время как автоматические устройства могут достигнуть скорость в несколько раз больше, примерно двести – триста т/мин.

На качество достаточно сильно влияет физические параметры самой токи. Не стоит забывать также про температуру и компрессию, с которой выполняется точечное сваривание.

Лучше стремиться к большему размеру и количеству точек, так прочность будет значительно выше. А применяется данный метод для любого размера деталей, от самого тонкого. Работу выполнять можно на профессиональных устройствах.

Созданный самостоятельно, наш аппарат абсолютно подходит для работы с тонким материалом, например железные бочки, трубы изготовленные из тонколистового металла.

Стоит учитывать, что самодельный точечный сварочный аппарат из телевизора имеет ряд недостатков, таких как, например, низкая производительность, непостоянная скорость работы, он вряд ли сможет заменить автоматический аналог.

Не выдвигайте ему много требований, тогда ваш прибор будет верным союзником в простых ремонтах.

Как смастерить точечную сварку

Настройтесь на кропотливый труд и можете приступать к изготовлению. Для контактного сплава без помощи профессионального оборудования и материалов понадобится трансформатор типа ТС-270, не меньше шести.

Их вы как раз таки сможете найти в советском телевизоре. Еще нужны петли размагничивания кинескопа.

Что же делать, если нужных для сборки точечной сварки деталей нет? Их можно отыскать в интернете объявления, купить у знакомых. Однако сделать это возможно будет сложнее, ведь там также есть умельцы, готовые скупить все для своих потребностей.

Но давайте сосредоточимся на конструировании точечной сварки.

Эскиз аппарата

Схема точечной сварки из телевизора приведена ниже.

Но совершенно необязательно придерживаться этой, можно нарисовать подобный самостоятельно. Это лишь наш образец.

Каркас и вторичная обмотка

Для основы нам понадобится лист гетинакса, размер которого 2.5 миллиметров. Собрать конструкцию вам поможет этот чертеж. То что получилось, обмотайте проводом (сделанным из 3-4 проводов, толщиной 0.9 миллиметров). Их вы возьмете в трансформаторах.

Внимательно следите, в итоге должно получиться примерно 150 витков, и помните про бумагу – ее нужно равномерно распределять по ходу обмотки.

Теперь приступим ко вторичной обмотке, которая будет в несколько раз толще. Для нее нужно разобрать петли размагничивания, и взять провода тоже из трансформатора.

Теперь обмотка получится из 350 витков. Проверьте, в результате у вас должна получиться намотка размером 100 кв.мм.

Следующий слой обмотки – жгут с целофаном. Выполняйте обмотку по тому же принципу, как вначале. Затем зачистите концы обмотки, спаяйте их жгутами по 10 проводов.

Только после этого приступайте к работе с ранее сделанным каркасом. Теперь сделайте 4-5 витков. Для конструкции возьмите стяжки в самих трансформаторах.

Блок управления

Мы сделали силовой блок, но это еще не все. Изготовление еще не завершилось, пока мы не сделали к ней прибор управления для нашей точечной сварки. Посмотрите, это образец чертежа.

Внимательно изучите наш чертеж, здесь следует быть внимательней. Блок управления создается из таких частей: сварочный трансформатор типа Т1, VD1-VD4 на устройстве D6, блок питания ТЗ, а кроме этого – генератор силы действия D5.2 – D5.3 с устройством выдержки D 4.1 – D4.3, D5.1, D4.5, D1-3.

Принцип действия механизма такой: После автоматического запуска питания (блок SA4 на схеме), ток проходит от первичной обмотки трансформатора (на схеме ТЗ), после этого, проходит через диодный мост, который уравнивает силу тока вторичной обмотки.

Частота в 100 Гц проходит через резистивный двигатель, откуда с блока, вырабатывающего импульсы, попадает сразу на начало счетчика. Но это соблюдается только благодаря тому, что фильтрующая элемент отделена диодом.

Счетчик начнет функционировать сразу же, как только нажимается клавиша SB1. На старте ЕС и R появляется нулевое напряжение – именно это – необходимое условие для старта.

Чертеж платы

Теперь, когда вы собрали блок управления, осталось только расположить его на печатную микросхему.

Вот пример односторонней, 215 на 60 миллиметров, смотрите рисунок.

Подробнее о деталях

Время поговорить обо всем, что понадобившиеся для работы но может вызвать затруднения. Как мы говорили, трансформаторы сможете найти в ненужном телевизоре.

Но не путайте трансформаторы модели ТС-270 – они как раз нужны нам, с ТСА-270 – с ними аппарат функционировать не будет. Разница в том, что материал у обмотки такого типа – алюминий, что совершенно не подходит. Разве что железо от них сгодится.

Трансформатор, который мы выбрали, имеет отличие приблизительно 20 Вольт. В то же время, потребление тока составляет приблизительно 50 миллиампер, что очень мало.

Есть конечно другие трансформаторы, которые вполне подходят под эти характеристики, которых достаточно много. Среди них нужно выделить образец типа ТВК-110ЛМ, хорошо проявивший себя в работе.

Его также можно достать во многих старых телевизорах.

Кроме того, применятся тиристоры модели VS1-VS2, но их как раз можно заменить типом Т142-50, или же одним симистором модели ТС2-80. Это никак не повлияет на качество.

Теперь про намотку трансформатора – понадобиться кольцевой сердечник типа М2000НМ. Размер, удовлетворяющий наши требования – 20 на 12 на 6.

Помните, что первичная обмотка будет содержать примерно сто витков провода типа ПЭШО, с диаметром 0.15 миллиметров. Потом, когда закончите с этим этапом, обязательно обмотать лакотканью все требуемые места.

По поводу переключателей, мы взяли наборные из станков ЧПУ. Они хорошо подойдут нам, однако можно взять выключатели из станков ПМП-10200ПУЗ, ПП10. Все же переключатели не играют ключевую роль в нашей работе.

Единственное, все таки нужно проследить за тем, чтобы они имели звено на 10 позиций. Вместо детали, обозначенной на рисунке SB1, используем переключатель МП11.

Кроме него можно взять КМ1-1, или механический переключатель типа А63 (в нашей рисунке – SA4). Данный образец рассчитан на 20 Ампер, а найти его можно в многоэтажках, стоит только заглянуть в электрощиток.

Заключение

Вы прочитали наши советы и рекомендации по поводу того, как самостоятельно смастерить аппарат точечной сварки с помощью деталей из ненужного телевизора.

Он точно будет верным помощником в домашнем хозяйстве мастерам или умельцам, желающим сэкономить. Прибор работает абсолютно со всеми видами металлов, толщина которых не выше 0.8 миллиметров.

Если вы сделаете все правильно, при сварке на шве точки будут вполне прочные и прослужат долгое время. Да, результат все же уступает профессиональному оборудованию, но в быту этого вполне достаточно.

Описанный нами способ не уникальный, существует много других способов создания точечной сварки. Например, из ненужной микроволновки. Подобные инструкции с чертежами вы сможете без труда отыскать в интернете.

Они просты, не требуют особенных знаний и умений. Обязательно практикуйтесь, а про результаты можете написать в комментариях (а также узнать опыт других). Творческих успехов!

Сообщества › Электронные Поделки › Блог › Мощная контактная сварка

Постройкой данного аппарата занялся очень давно, еще в начале 2000-х. Нашел подходящую статью в журнале Радиоаматор №11. 2001, все устроило. Собрал трансформатор…

Сверил со схемой и изготовил печатную плату и корпус для всей электроники. Стал проверять и настраивать электронную часть, оказалось, что она не работает. Не работает не из-за моих ошибок в разводке платы и не из-за неисправных деталей. Причиной были многочисленные ошибки в принципиальной схеме. Это я уже понял. После неудачных попыток исправить все, по нехватке знаний в цифровой технике, насколько смог, добился от устройства нескольких выдержек времени. Этого мне пока хватало, а переделывать все не было никакого желания. Да и острая необходимость в контактной сварке отпала сама собой. Аппарат был успешно взгромоздён на полку в подвале и забыт надолго.
Потом была пара подтоплений в подвале, уровень воды поднимался до пояса и все, что нажито непосильным трудом, разом пришло в негодность.
Теперь снова возникла потребность в этой сварке. Достал, начал проверять и после вскрытия обнаружил испорченные “кишки” всей электроники, кроме некоторых элементов и соответственно самого силового трансформатора.
Взялся за повторение проекта и с учетом прошлых ошибок начал проверять правильность схемы в первоисточнике. Было выявлено еще несколько ошибок в схеме. Потом здесь в сообществе просил помочь мне прогнать схему в Протеусе, т.к. я с ним совсем не работал и представления не имею как это делать. Некоторые просто давали советы, некоторые на словах (глядя на мою схему) описывали как должно все работать. Некоторые вообще были возмущены такой дерзкой просьбой и и моей попыткой отнять у них драгоценнейшее время. Посоветовали мне собрать все на макетной плате для Ардуино и в таком виде проверить работоспособность устройства. “Ведь 21 век на дворе” есть такая “чудо-плата”, на ней и проверяй”. А на мою просьбу проверить все в Протеусе так никто и не откликнулся.
Ну, это все лирика и вступление, хватит букв — к устройству…
Трансформатор на первой фотографии — “стёб” — это “диванным теоретикам”.
Вот транс, который был намотан на шести сердечниках ТС-270, провод первичной обмотки диаметром 3,2 мм, вторичка намотана 4 витка кабелем от промышленной дуговой сварки (сечение я к сожалению не знаю). Напряжение холостого хода во вторичной обмотке 6 вольт:

Еще раз проверил схему и сравнил каждую мелкосхему с даташитом, как оно должно работать (в теории). Вот первоначальная схема, кстати и она немного подправлена на предмет лишних соединений :

Все-таки нашел в своем городе человека, владеющего Протеусом и он проверил работоспособность схемы в программе. “Вылизал” все “косяки” и уже получилась нормальная, работоспособная схема.
Вот она:

Все вроде складывалось. Сделал “печатку”, запаял детальки и принялся настраивать. И здесь не обошлось без мелких неприятностей. Генератор на микросхеме DD4.1-DD4.3 выдавал импульсы с частотой 100 Гц, но у сигнала была слишком большая амплитуда и установленная выдержка работала 1 раз из 20 — 30 попыток. Пришлось опытным путем (методом “научного тыка”) подобрать задающие элементы на входе генератора (R9, C2). Причем установка простого резистора на 5 кОм вместо R1 не дала результата. Установил еще и конденсатор…
Да, чуть не забыл, в качестве управляющего элемента для силового трансформатора был использован сдвоенный оптосимистор МТОТО 80, специально раздобытый для данного устройства. Запас по току у него огромный, даже с избытком…

Как сконструировать сварочный аппарат из деталей старых телевизоров

Довольно часто в бытовых условиях мы сталкиваемся с необходимостью сварки каких-либо элементов из черного металла.

Как известно, фабричные сварочные инверторы стоят недешево, потому многие доморощенные мастера на все руки принимаются самостоятельно конструировать сварочный аппарат из деталей старых телевизоров.

Для создания простого сварочного инвертора, потребуются только электронные компоненты от старых телевизоров.

Рассмотрим этапы создания своими руками наиболее простого и доступного сварочного инвертора, в котором применяются самые распространенные узлы и элементы. Выбирая между конструкцией на инверторной основе или со сварочным трансформатором, остановимся на первом варианте, так как для сварочного трансформатора характерны немалая величина, большое количество провода из меди и наличие тяжелого магнитопровода, что многие попросту не могут себе позволить. Напротив, электронные детали старого телевизора для инвертора достать не так затруднительно, они обойдутся гораздо дешевле.

Общие характеристики сварочного аппарата из старых телевизоров

На рис. 1 представлена схема работы простого однокатного инвертора, преимуществом которого является отсутствие труднодоступных деталей и элементарность конструкции; для изготовления аппарата взято множество радиоэлементов от старых телевизоров. К тому же такое устройство практически не нуждается в настройке.

Этот сварочный аппарат из деталей телевизора имеет такие характеристики:

Рисунок 1. Схема простого однокатного инвертора.

  1. Максимум потребляемого тока от сети — 20 А.
  2. Предел регулировки сварочного тока — 40-130 А.
  3. Максимум напряжения на холостом ходу на электроде — 90 В.
  4. Напряжение в сети переменного тока 50 Гц частотой — 220 В.
  5. Наибольший возможный диаметр рабочего электрода — 3 мм.
  6. Длительность нагрузки при окружающей температуре 25 градусов и выходном токе 100 А — 60%; при 130 А — 40%.
  7. Размеры сварочного аппарата составляют 35×18×10,5 см.
  8. Вес конструкции (без учета электродержателя и кабелей) — 5500 г.
  9. Сварочный ток постоянный, регулировка плавная.
Читайте также:  Самодельная подставка из пробок

Напряжение запускается кнопкой, которая располагается на электродержателе, что, в свою очередь, позволяет применять увеличенное напряжение зажигания дуги и повышать электробезопасность, а также напряжение на электроде выключается автоматом, если отпустить электродержатель. Увеличенное напряжение дает возможность облегчить зажигание дуги и обеспечить постоянство горения.

При помощи этого аппарата можно соединять детали из тонких листов металла, потому как происходит применение сварочного постоянного тока одновременно с противоположной полярностью напряжения сварки.

Составные части сварочного инвертора

Рисунок 2. Схема монтажа обмоток на магнитопроводе.

Напряжение в электросети выпрямляется посредством использования диодного моста VD1-VD-4. Прямой ток, минуя лампу HL1, приступает к зарядке C5 конденсатора. Лампа необходима для ограничения зарядного тока. Приступать непосредственно к сварке можно только тогда, когда перестанет гореть лампа HL1. В то же время зарядка доходит до конденсаторов батареи C6-C17 по дросселю L1. Если горит светодиод HL2, то сварочный аппарат из деталей телевизора подключен к сети. В это время тринистор VS1 все еще закрыт.

Если нажимается кнопка SB1, происходит запуск импульсивного генератора, в основе которого лежит транзистор с одним переходом VT1. Генераторные импульсы вызывают открытие транзистора VS2, который стимулирует открытие параллельно подключенных тринисторов VS3-VS7. Посредством первичной обмотки трансформатора Т1 и дросселя L2 происходит разрядка конденсаторов C6-C17.

Цепочка из конденсаторной группы С6-С17, первичной обмотки трансформатора и Т1 и дросселя L2 в сумме образует колебательный контур. В тот момент, когда в этом контуре ток меняет свое направление, он протекает по диодам VD8, VD9, а до последующего генераторного импульса на транзисторе VT1 происходит закрытие тринисторов VS3-VS7, после чего цикл повторяется.

Тринистор VS1 открывается благодаря импульсам, которые возникают на обмотке 3-го трансформатора T1. Тринистор VS1 непосредственно соединяет выпрямитель сети на диодах VD1-VD4 с преобразователем тринисторов. В качестве индикатора генерации напряжения импульсов выступает светодиод HL3. Диоды VD11-VD34 необходимы для выпрямления сварочного напряжения, в то время как С19-С24 предназначаются для его сглаживания, делая зажигание сварочной дуги более легким и плавным.

Рисунок 3. Конструкция сварочного выпрямителя.

В качестве выключателя SA1 можно использовать переключатель пакетного или другого типа, который сможет выдержать ток минимум 16 А. Конденсатор С5 в процессе выключения замыкается секцией SA1.3 на резисторе R6, который мгновенно разряжается, что, в свою очередь, дает возможность безопасно осматривать и ремонтировать аппарат для сварки. Узлы конструкции охлаждаются благодаря работе вентилятора ВН-2. Использовать вентиляторы с меньшей мощностью не стоит, иначе потребуется монтировать несколько таких. В качестве конденсатора С1 используется произвольный, предназначающийся для функционирования в условиях переменного напряжения 220 В.

Диоды VD1-VD4 должны предназначаться для минимального тока 16 А и противоположного напряжения минимум 400 В. Они монтируются на алюминиевые уголковые теплоотводные пластинки габаритами 6×1,5 см и толщиной 0,2 см. Одиночный конденсатор С5 возможно заменить батареей, состоящей из нескольких подключенных параллельно, рассчитанных на минимальное напряжение в 400 В.

Дроссель L1 выполняется на магнитопроводе ПЛ из стали размером 12,5×25-45. Сгодится и другой магнитопровод с аналогичным или большим сечением, в окне которого сможет поместиться обмотка, которая включает 175 витков провода ПЭВ-2 сечением 1,32. Категорически запрещено применять провод с меньшим диаметром! У магнитопровода должна соблюдаться следующая характеристика: немагнитное отверстие должно составлять 0,3-0,5 мм. Индуктивность дросселя должна находиться в пределе 40+10 мкГн.

Рисунок 4. Чертеж фиксирующих пластин.

У конденсаторов С6-С24 должен быть небольшой тангенс угла диэлектрической потери, а у С6-С17 вдобавок и сварочное напряжение 1000 В. Лучше всего прибегнуть к использованию конденсатора К78-2, которые служили деталью старых телевизоров. Возможно применение других, более популярных конденсаторов сходной группы с иной емкостью, достигающих в сумме той емкости, которая обозначена в схеме. Не стоит применять бумажные и прочие конденсаторы, которые предназначены для работы в цепях с низкими частотами, поскольку они в большинстве своем ведут к быстрой поломке самодельного сварочного аппарата.

Подборка тринисторов

В идеале используйте тринисторы КУ221 (VS2-VS7), на которых значится буквенный индекс А (можно также Б или Г). Практикой доказано, что в процессе работы сварочного аппарата тринисторовые катодные выводы сильно нагреваются, вследствие чего может деформироваться пайка на плате или тринисторы вовсе перестанут функционировать. Можно увеличить надежность путем надевания на катодные выводы трубочек-пистонов, выполненных из медной луженой фольги 0,1-0,12 мм толщиной, или же использовать бандажи в форме спирали из луженой медной проволоки 0,2 мм толщиной, после чего сделать пайку по всей поверхности. Трубка-пистон или бандаж должны закрывать вывод катода по всей поверхности вплоть до основания. Во избежание перегрева тринистора пайку нужно осуществлять быстро.

Рисунок 5. Схема печатной платы из фольгированного стеклотекстолита.

Некоторые могут задаться вопросом: почему не заменить несколько тринисторов с малой мощностью на один достаточной мощности? Такую замену теоретически совершить можно, если вы используете прибор, который превосходит (или, по крайней мере, равен) по показателям частоты тринисторам КУ221А. Но в числе легкодоступных (ТЧ или ТЛ) таковых не бывает. Кроме того, есть сведения, что один тринистор с большой мощностью является не таким надежным, как несколько подключенных параллельным способом, потому что они лучше отводят тепло. Достаточно монтировать несколько тринисторов на одной теплоотводящей пластинке с минимальной толщиной 3 мм.

Резисторы R14-R18 (С5-16 В), уравнивающие ток, имеют свойство сильно нагреваться в процессе сварки, поэтому перед их установкой нужно убрать с них чехол, сделанный из пластмассы, посредством обжига или нагрева. Диоды VD8 и VD9 монтируются на теплоотводе рядом с тринисторами, при этом между диодом VD9 и теплоотводом устанавливается прокладка, выполненная из слюды. Обязательно нужно использовать теплопроводящий гель.

Дроссель L2 имеет вид спирали без каркаса, состоящей из 11 витков провода, толщина которого минимум 4 мм 2 . В процессе сварки дроссель имеет свойство сильно нагреваться, потому, наматывая спираль, требуется оставить промежуток между витками в пределах 1-1,5 мм. Дроссель требуется расположить таким образом, чтобы он попадал в поток воздуха, создаваемый вентилятором.

Монтаж обмоток на магнитопроводе

Трансформаторный магнитопровод Т1 формируется из собранных вместе трех магнитопроводов ПК 3×1,6, выполненных из феррита 3000НМС-1 (на них выполнялись строчные трансформаторы для старых телевизоров). Первый и второй слой обмотки делятся на 2 группы (рис. 2). Первый слой обмотки содержит в себе 2×4 витков, второй — из 2×2 витков.

Чертеж теплоотвода в сборе с платой.

Группы наматываются на заранее подготовленную оправку из дерева. От случайного раскручивания витков предохраняет пара бандажей, выполненных из медной луженой проволоки толщиной 0,8-1 мм. По ширине бандаж должен быть 1-1,1 см. Под каждым бандажом должна быть электрокартонная подкладка. Бандажи после установки пропаиваются. Необходимо учитывать, что в самом агрессивном тепловом режиме будет работать обмотка I. Потому в процессе ее накручивания и сборки между витками необходимо оставлять воздушные промежутки, устанавливая между витками небольшие стеклотекстолитные вставки, на которые предварительно нанесен теплостойкий клеевой раствор. Запомните, чем больше воздушных промежутков будет в обмотке, тем лучше будет проходить отведение тепла из трансформатора.

Монтаж обмоток на магнитопроводе проходит в четкой последовательности, чтобы обеспечить корректное функционирование выпрямителя VD11-VD32. Если на трансформатор смотреть сверху, то намотка обмотки I должна идти против часовой стрелки. Верхний вывод подключается к дросселю L2.

К основанию сварочного аппарата трансформатор крепится с помощью трех скобок, сделанных из медной или латунной проволоки 3 мм толщиной. Аналогичными скобками необходимо зафиксировать все детали магнитопровода. Перед тем как монтировать трансформатор, необходимо установить электрокартонные прокладки 0,2-0,3 мм толщиной в каждый из трех групп магнитопровода.

Конструкция сварочного выпрямителя

Сварочный выпрямитель выполнен как обособленный блок, имеющий форму этажерки (рис. 3). Он сконструирован таким образом, что каждая из диодных пар VD11-VD34 помещается между парой теплоотводящих пластин 4,4×4,2 см и толщиной 0,1 см, сделанных из алюминия. Конструкция блока стягивается двумя парами резьбовых шпилек из стали 0,3 см в сечении между парой фланцев 0,2 см толщиной, к которым крепятся с помощью винтов 2 платы, которые образуют выводы выпрямителя.

В этой конструкции все диоды имеют одинаковую ориентацию (см. рис. 4) и впаиваются выводами в зазоры платы, которая играет роль общего плюсового вывода выпрямителя и агрегата в общем. Анодные диодные выводы впаиваются в зазоры второй платы, на которой формируется два комплекта выводов, присоединяющихся к трансформаторной обмотке II, как показано на схеме.

Конденсаторы С2-С4, С6-С18, все резисторы (за исключением R1-R6), тринисторы VS2-VS7, транзистор VT1, диоды VD8-VD10, стабилитроны VD5-VD7 устанавливаются на печатной плате, при этом диоды VD8, VD9 и тринисторы монтируются на теплоотводе, который привинчивается к плате. Материалом для платы служит фольгированный стеклотекстолит 1,5 мм толщиной. Схема платы представлена на рис. 5. Масштаб рисунка составляет 1:2, но разметить плату не составляет труда даже без фотоувеличительных средств.

Не требуется абсолютной точности разметки и проделывания отверстий на плате, но учитывайте, что отверстия платы должны совпасть с отверстиями в теплоотводящей пластинке.

Точечная сварка в домашней мастерской

Разновидности и классификация сварки

Сваркой называют процесс получения неразъемного соединения деталей за счет образования межатомных связей в сварном шве. Такие связи возникают при воздействии местного или общего нагрева свариваемых деталей, либо под воздействием пластической деформации, либо того и другого вместе.

Сварка чаще всего применяется для соединения металлов и их сплавов, для соединения термопластов и даже в медицине. Но сварка живых тканей выходит за рамки данной статьи. Поэтому вкратце рассмотрим лишь те виды сварки, которые применяются в технике.

Современное развитие сварочных технологий таково, что позволяет выполнять сварочные работы не только в условиях производства, а также на открытом воздухе и даже под водой. В последние годы сварочные работы в качестве эксперимента уже проводились в космосе.

Для производства сварки применяются различные виды энергии. В первую очередь это электрическая дуга или пламя газовой горелки. Более экзотичными источниками являются ультразвук, излучение лазера, электронный луч, а также сварка трением.

Все сварочные работы сопряжены с высокой пожарной опасностью, загазованностью вредными газами, ультрафиолетовым облучением, и просто опасностью поражения электрическим током. Поэтому проведение сварочных работ требует неукоснительного соблюдения правил техники безопасности.

Все способы сварки в зависимости от вида энергии и технологии ее использования подразделяются на три основных класса: термический класс, термомеханический класс, и механический класс.

Сварка термического класса осуществляется плавлением за счет использования тепловой энергии. В основном это широко известная электродуговая сварка и газовая сварка. Сварка термомеханического класса выполняется при помощи тепловой энергии и механического давления. Для сварки механического класса используется энергия давления и трения. Все разделения сварки на классы производятся согласно ГОСТ 19521-74.

Точечная сварка

Точечная сварка относится к разряду так называемых контактных сварок. Кроме нее туда же относятся стыковая и шовная сварки. В условиях домашней мастерской последние два вида осуществить практически невозможно, поскольку оборудование слишком сложное для повторения в условиях кустарного производства. Поэтому далее будет рассмотрена только точечная контактная сварка.

Согласно вышеприведенной классификации точечная сварка относится к термомеханическому классу. Процесс сварки состоит из нескольких этапов. Сначала свариваемые детали, предварительно совмещенные в нужном положении, помещаются между электродами сварочной машины и прижимаются друг к другу. Затем подвергаются нагреву до состояния пластичности, и последующему совместному пластическому деформированию. При использовании автоматического оборудования в промышленных условиях достигается частота сварки 600 точек в минуту.

Краткая технология точечной сварки

Нагрев деталей осуществляется за счет подачи кратковременного импульса сварочного тока. Длительность импульса варьируется в пределах 0,01…0,1 сек в зависимости от условий сварки. Этот кратковременный импульс обеспечивает расплавление металла в зоне электродов и образование общего для обеих деталей жидкого ядра. После снятия импульса тока в течение некоторого времени детали удерживаются под давлением для остывания и кристаллизации расплавленного ядра.

Прижатие деталей в момент сварочного импульса обеспечивает образование вокруг расплавленного ядра уплотняющего пояска, который препятствует выплеску расплава из зоны сварки. Поэтому дополнительных мер защиты места сварки не требуется.

Усилие сжатия электродов следует снимать с некоторой задержкой после окончания сварочного импульса, что обеспечивает условия для лучшей кристаллизации расплавленного металла. В некоторых случаях на окончательной стадии рекомендуется увеличение усилия прижима деталей, что обеспечивает проковывание металла и устранение внутри сварного шва неоднородностей.

Следует заметить, что для получения качественного сварочного шва свариваемые поверхности должны быть предварительно подготовлены, в частности, зачищены от толстых оксидных пленок или попросту ржавчины. Для сварки достаточно тонких листов, до 1…1,5 мм применяется так называемая конденсаторная сварка.

Конденсаторы заряжаются от сети непрерывно, достаточно небольшим током, потребляя незначительную мощность. В момент сварки конденсаторы разряжаются через свариваемые детали, обеспечивая необходимый режим сварки.

Такие источники применяются для сварки миниатюрных и сверхминиатюрных деталей в приборостроении, электронной и радиотехнической промышленности. При этом возможна сварка, как черных, так и цветных металлов, причем даже в различном сочетании.

Достоинства и недостатки точечной сварки

Как и все на свете точечная сварка имеет свои достоинства и недостатки. К достоинствам, прежде всего, следует отнести высокую экономичность, механическую прочность точечных швов и возможность автоматизации сварочных процессов. Недостатком следует признать отсутствие герметичности сварочных швов.

Самодельные конструкции аппаратов точечной сварки

В условиях домашней мастерской точечная сварка может быть просто необходима, поэтому было разработано немало аппаратов, пригодных для самостоятельного изготовления в домашних условиях. Далее будет приведено краткое описание некоторых из них.

Одна из первых конструкций аппарата для точечной сварки была описана в журнале РАДИО N 12, 1978 г. с.47-48 . Схема аппарата показана на рисунке 1.

Рисунок 1. Схема аппарата для точечной сварки

Подобный аппарат не отличается повышенной мощностью, с его помощью можно сваривать листовой металл толщиной до 0,2 мм или стальную проволоку диаметром до 0,3 мм. При таких параметрах вполне возможна сварка термопар, а также приваривание тонких деталей из фольги к массивным стальным основаниям.

Одно из возможных применений это приваривание тонких листов фольги с предварительно наклеенными тензодатчиками к испытываемым деталям. В виду того, что свариваемые детали малогабаритные, усилие прижима при их сварке невелико, поэтому сварочный электрод выполнен в виде пистолета. Прижим деталей осуществляется усилием руки.

Читайте также:  Самодельный браслет в виде змеи

Схема сварочного аппарата достаточно проста. Основное ее назначение это создание сварочного импульса необходимой длительности, что обеспечивает различные режимы сварки.

Основным узлом аппарата является сварочный трансформатор Т2. К его вторичной обмотке (по схеме верхний конец) с помощью многожильного гибкого кабеля подключается сварочный электрод, а к нижнему концу подключается более массивная свариваемая деталь. Подключение должно быть достаточно надежным.

Сварочный трансформатор подключен к сети через выпрямительный мост V5…V8. В другую диагональ этого моста включен тиристор V9 при открытии которого напряжение сети через выпрямительный мост прикладывается к первичной обмотке трансформатора Т2. Управление тиристором осуществляется с помощью кнопки S3 «Импульс» расположенной в рукоятке сварочного пистолета.

При включении в сеть от вспомогательного источника сразу же заряжается конденсатор С1. Вспомогательный источник состоит из трансформатора Т1 и выпрямительного моста V1…V4. Если теперь нажать кнопку S3 «Импульс», то конденсатор С1 через ее замкнутый контакт и резистор R1, будет разряжаться через участок управляющий электрод – катод тиристора V9, что приведет к открытию последнего.

Открывшийся тиристор замкнет диагональ моста V5…V9 (по постоянному току), что приведет к включению сварочного трансформатора Т1. Тиристор будет открыт до тех пор, пока не разрядится конденсатор С1. Время разряда конденсатора, а следовательно и время импульса сварочного тока можно регулировать переменным резистором R1.

Для того, чтобы подготовить следующий импульс сварки, кнопку «Импульс» необходимо кратковременно отпустить, чтобы зарядился конденсатор С1. Следующий импульс будет сформирован при повторном нажатии на кнопку: весь процесс повторится, как было описано выше.

В качестве трансформатора Т1 подойдет любой маломощный (5…10Вт) с выходным напряжением на обмотке III около 15В. Обмотка II используется для подсветки, ее напряжение 5…6В. При указанных на схеме номиналах С1 и R1 максимальная длительность импульса сварки около 0,1 сек, что обеспечивает сварочный ток на уровне 300…500 А, что вполне достаточно для сварки малогабаритных деталей, упоминавшихся выше.

Трансформатор Т2 изготовлен на железе Ш40. Толщина набора 70 мм, первичная обмотка намотана проводом ПЭВ-2 0,8 и содержит 300 витков. Вторичная обмотка намотана сразу в два провода и содержит 10 витков. Провод вторичной обмотки многожильный диаметром 4мм. Также можно применить шину сечением не менее 20 кв.мм.

Тиристор ПТЛ-50 вполне возможно заменить на КУ202 с буквами К, Л, М, Н. При этом емкость конденсатора С1 придется увеличить до 2000 мкФ. Вот только надежность работы аппарата при такой замене может несколько уменьшиться.

Более мощный аппарат для точечной сварки

Описанный выше аппарат можно назвать аппаратом для микросварки. Схема более мощного аппарата показана на рисунке 2.

Рисунок 2. Принципиальная схема аппарата точечной сварки

При ближайшем рассмотрении нетрудно заметить, что структурно она очень похожа на предыдущую и содержит те же узлы, а именно: сварочный трансформатор, полупроводниковый тиристорный ключ и устройство выдержки времени, обеспечивающее требуемую длительность сварочного импульса.

Эта схема позволяет сваривать листовой металл толщиной до 1 мм, а также проволоку диаметром до 4 мм. Такое увеличение мощности по сравнению с предыдущей схемой достигнуто за счет применения более мощного сварочного трансформатора.

Общая схема аппарата показана на рисунке 2а. Первичная обмотка сварочного трансформатора Т2 подключена к сети через тиристорный бесконтактный пускатель типа МТТ4К. Прямой ток такого пускателя 80 А, обратное напряжение 800 В. Его внутреннее устройство показано на рисунке 2в.

Схема модуля достаточно проста и содержит два тиристора, включенных встречно – параллельно, два диода и резистор. Контакты 1 и 3 коммутируют нагрузку в то время, когда замкнуты контакты 4 и 5. В нашем случае они замыкаются при помощи контактной группы реле К1. Для защиты от аварийных ситуаций схема содержит автоматический выключатель АВ1.

Реле времени собрано на трансформаторе Тр1, диодном мосте КЦ402, электролитических конденсаторах С1…С6, реле К1 и коммутирующих переключателях и кнопках. В положении показанном на схеме при включении автомата АВ1 начинают заряжаться конденсаторы С1…С6.

Конденсаторы подключаются к диодному мосту при помощи переключателя П2К с независимой фиксацией, что позволяет подключать различное количество конденсаторов и тем самым регулировать выдержку времени. В цепи заряда конденсаторов установлен резистор R1, его назначение ограничить зарядный ток конденсаторов в начальный момент зарядки. Это позволяет увеличить срок службы конденсаторов. Зарядка конденсаторов происходит через нормально – замкнутый контакт кнопки КН1.

При нажатии на кнопку КН1 замыкается ее нормально – разомкнутый контакт, который подключает реле К1 к времязадающим конденсаторам. Нормально – замкнутый контакт в это время, естественно, размыкается, что препятствует подключению реле К1 непосредственно к выпрямительному мосту.

Реле срабатывает, своими контактами замыкает управляющие контакты тиристорного реле, которое и включает сварочный трансформатор. После того, как конденсаторы разрядятся, реле отключится, сварочный импульс прекратится. Для подготовки к следующему импульсу кнопку КН1 требуется отпустить.

Для точного подбора времени импульса служит переменный резистор R2. В качестве реле К1 подойдет герконовое реле типа РЭС42, РЭС43 или подобное с напряжением срабатывания 15…20 В. При этом, чем меньший ток срабатывания реле, тем больше выдержка времени. Ток между контактами 4 и 5 тиристорного пускателя не превышает 100 мА, поэтому подойдет любое слаботочное реле.

Конденсаторы C1 и С2 по 47 мкФ, С3, С4 100 мкФ, С5 и С6 470 мкФ. Рабочее напряжение конденсаторов не менее 50 В. Трансформатор Тр2 подойдет любой, мощностью не свыше 20 Вт с напряжением вторичной обмотки 20…25 В. Выпрямительный мост можно собрать из отдельных диодов, например широко распространенных 1N4007 или 1N5408.

Сварочный трансформатор изготовлен на магнитопроводе от сгоревшего ЛАТРА на 2,5 А. После удаления старой обмотки железо обматывается не менее, чем тремя слоями лакоткани. На торцах магнитопровода, перед намоткой лакоткани, устанавливаются кольца из тонкого электрокартона, которые подгибаются по внешней и внутренней кромкам кольца. Это предотвращает разрушение лакоткани при намотке и последующей эксплуатации.

Первичная обмотка выполняется проводом диаметром 1,5 мм, лучше всего, если провод будет с тканевой изоляцией, что улучшает условия для пропитки обмотки лаком. Для пропитки можно использовать лак КС521 или ему подобный. Количество витков показано на рисунке 2б. с помощью отводов можно осуществлять грубую регулировку сварочного тока. Между первичной и вторичной обмотками наматывается слой хлопчатобумажной ленты, после чего катушка пропитывается лаком.

Вторичная обмотка выполнена многожильным проводом в кремнийорганической изоляции диаметром 20 мм и содержит 4…7 витков. Площадь провода не менее 300 кв.мм. На концах провода устанавливаются наконечники, которые для лучшего контакта следует пропаять. Возможно выполнить вторичную обмотку жгутом из нескольких более тонких проводов. Общая площадь должна быть не менее указанной, а намотка всех проводов должна производиться одновременно. Такая конструкция трансформатора обеспечивает сварочный ток до 1500 А. Напряжение холостого хода 4…7 В.

Сварочно – контактный механизм выполняется в соответствии с характером выполняемых работ по одной из известных схем. Чаще всего это сварочные клещи. Давление, создаваемое механизмом, около 20 КГ/см.кв. Более точно это усилие подбирается практическим путем. Контакты изготавливаются из меди или бериллиевой бронзы. При этом размер контактных площадок должен быть по возможности минимальным, что обеспечивает получение более качественного сварочного ядра.

Любительских конструкций для точечной сварки сейчас можно найти немало. В дело идет все, что угодно. Например, одна из конструкций создана на основе силовых трансформаторов ТС270 от старых ламповых цветных телевизоров. Для создания такой установки понадобилось шесть трансформаторов. Появляются даже схемы с микропроцессорным управлением, но общий смысл конструкций остается неизменным: создать кратковременный импульс сварочного тока и достаточное усилие прижима в месте сварки.

Контактная сварка своими руками, изготовление аппарата

В основе процесса контактной сварки лежит нагрев места соединения электрическим током с одновременным воздействием на него большим давлением. В промышленности контактная сварка нашла широкое применение при выполнении крестообразных соединений и стыков арматуры железобетонных или стальных конструкций, соединении медных и алюминиевых проводов, стальных труб. В домашних условиях возможна контактная сварка своими руками при помощи специального аппарата, который также можно сделать самостоятельно. После этого аппарат можно применить для сварки труб электросваркой своими руками.

Аппарат для контактной сварки (далее АКС) может использоваться для сваривания деталей из листов обычной и нержавеющей стали толщиной 0,08 – 0,9 мм или для соединения стальной проволоки до 1,5 мм толщиной.

Устройство аппарата

АКС содержит в своем составе два функциональных узла – блок питания и выносной сварочный пистолет. Узел блока питания состоит из электронного реле, собранного на тиристоре VS1 и мощном сварочном трансформаторе Тр2. К одному выводу его вторичной низковольтной обмотки с помощью сварочного кабеля подключен электрод. Второй вывод при сварке надо надежно соединить с наиболее массивной из свариваемых деталей. Первичная обмотка трансформатора Тр2 подключается к сети с помощью диодного моста на VD5…VD8 и тиристора VS1, включенного в его диагональ. Вспомогательный трансформатор Тр1 малой мощности питает сеть управления тиристора и лампу подсветки (обмотка II). Чертеж №1 – Пистолет АКС

Сварочный пистолет собран из двух одинаковых по размерам и форме деталей, вырезанных из текстолита, гетинакса или другого прочного изоляционного материала. В передней части крепятся ламподержатель (поз. 28), переходник (поз. 2) и микропереключатель SA5. В задней – выключатель подсветки SA5, закрепленный между накладками винтами М2 и держателями (поз. 27). Накладки соединяются между собой винтами, вкручивающимися в ламподержатель, переходник и распорные планки. Между накладками располагается сварочный кабель, соединяемый с переходником с помощь контровочного винта (поз. 9). Управляющие провода фиксируются на сварочном кабеле и коммутируют переключатели SA2, SA5 и элементы БП. Сменные электроды (поз. 3) крепятся в отверстие переходника M8 и фиксируются контровочной гайкой (поз. 10). На основании без изоляционных прокладок монтируется второй вывод вторичной обмотки трансформатора Тр2. Кабель, подключенный к этому выводу, снабжается зажимом любого типа, для закрепления на одной из свариваемых деталей. Рекомендуемый тип зажима – струбцина.

Изготовление АКС

Для того, чтобы собрать аппарат контактной сварки своими руками, следует воспользоваться нижеследующими рекомендациями. Габариты блока питания определятся размерами Тр2, поэтому сборку следует начинать с него. Конструкция трансформатора особого значения не имеет. Определяющим параметром является сечение магнитопровода, которое не должно быть меньше 60 см2. Магнитопровод можно использовать любой. Первичную обмотку, содержащую 160 – 165 витков, следует намотать на круглом каркасе из электрокартона проводом ПЭТВ диаметром 1,62…1,7 мм и разместить на одной из сторон магнитопровода, изолировав ее от него деревянными клиньями. Вторичная обмотка содержит 4,5 витка медной шины ПБУ 5,2 x 17,5 мм. Можно использовать другую шину или провод, но сечение не должно быть меньше 90 мм2.

Затем концы шины вторичной обмотки надо изогнуть петлей для последующего крепления к ним болтами сварочных кабелей. Перед намоткой шина по всей длине изолируется лентой из фторопласта или подобного материала в один слой. Можно использовать изоленту на х/б основе, сложенную в 2 – 3 слоя. Такой же лентой надо изолировать друг от друга все слои первичной обмотки. Ее выводы фиксируются х/б тесьмой. Пластины магнитопровода должны собираться “вперекрышку”, то есть перекрывая длинной пластиной стык с короткой и так далее.

Чертеж №3 – трансформатор ТР2

Стяжку магнитопровода надо производить уголками и болтами М8. Сначала для выпрямления пластин выполняется предварительная стяжка. После этого верхнюю часть магнитопровода надо удалить и поместить на него каркасы с обмотками. Затем пластины верхней части надо поставить на место и выполнить окончательную стяжку пластин. Каркасы относительно магнитопровода должны фиксироваться деревянными клиньями.

Проверка

Затем надо выполнить электрическую проверку Тр2 – включить в сеть 220 В и измерить напряжение на вторичной обмотке. Оно должно быть равно 41 В, а обмотки не должны перегреваться. Чертеж №4

После изготовления Тр2, учитывая его реальные размеры, надо вычислить габариты кожуха и основания и вырезать из листовой стали. Детали электронного реле можно расположить на плате из листового гетинакса или текстолита толщиной 3 – 5 мм.

Детали можно сваривать при помощи различных видов сваривания. Подробнее о каждом из них читайте в этой статье.

Вам нужно соединить разнородные металлы? Как это сделать, описано по https://elsvarkin.ru/texnologiya/xolodnaya-svarka-metalla/ ссылке.

Вспомогательный трансформатор

Готовый трансформатор Тр1 может быть любого типа и должен обеспечивать на вторичной обмотке значения напряжений 6 и 10-15 В. Самодельный Тр1 можно сделать на основе магнитопровода любого типа сечением 1 см2. Первичная обмотка должна содержать 8000 витков провода ПЭТВ – 2 диаметром 0,06 мм, вторичная – 800 витков того же провода, обмотка III – 200 витков провода ПЭТВ – 2 диаметром 0,2 мм. Обмотки между собой и магнитопроводом следует изолировать несколькими слоями фторопластовой ленты. В качестве сварочных можно использовать провода типа КОГ-2 с основной жилой диаметром 90 мм2 и четырьмя вспомогательными жилами.

Последовательность сборки сварочного пистолета

Создание сварочного пистолета рекомендуется начинать с изготовления электродов и переходника (см. чертеж). Из листа винипласта или текстолита вырезаются накладки, размеры которых могут быть изменены под руку владельца контактной сварки своими руками. В ламподержателе сверлятся каналы для проводов, ведущих к лампе подсветки. При помощи винтов М2 и двух держателей к накладкам крепится микропереключатель.

Распорные планки можно изогнуть из полосы оргстекла по месту с учетом расположения на накладках (поз. 2, 6, 7 и 28) и проходящего через рукоятку сварочного кабеля. Накладки скрепляются винтами М5, ввернутыми в распорные планки и переходник. Конец сварочного кабеля опаивается и вставляется в отверстие переходника с фиксацией контровочным винтом. Для более надежной фиксации накладок рекомендуется применить клеящие мастики “Монолит” или “Гарант”. Острые кромки накладок надо притупить, а рукоятку обмотать изолентой.


Если сборка выполнена правильно, то АКС начинает работать сразу. Чтобы оценить, как работает собранная контактная электросварка, можно поступить следующим образом. К очищенной от поверхности стального бруска несколькими точками приваривают полоску стального листа до 10 – 12 мм шириной, а затем отрывают ее плоскогубцами. В точках соединения должны остаться отверстия (так называемые вырывы) диаметром 0,5 – 0,8 мм. При возможных отклонениях следует отрегулировать длительность сварочного импульса подстроечным резистором R1. Проверку надо производить как при параллельном, так и последовательном включении конденсаторов, что выбирается переключателями SA3 и SA4.

Читайте также:  Самодельные деревянные накладки для ручек сумок и пакетов

Эксплуатация АКС

Мастер, работающий с АКС должен находиться на резиновом коврике и использовать защитные очки и резиновые перчатки. “Заземляющий” кабель надо подсоединить к детали, к которой требуется приварить другую деталь. Затем надо включить АКС, приложить друг к другу соединяемые детали, плотно прижать их электродом сварочного пистолета и нажать на кнопку SA5. Спустя 1 – 1,5 сек электрод можно снять с точки и установить на следующую. При необходимости можно включить подсветку.

All-Audio.pro

Статьи, Схемы, Справочники

Контактная сварка своими руками из старого телевизора

В ремонтных мастерских часто осуществляют замену израсходовавших свой ресурс аккумуляторов различной строительной, компьютерной и бытовой техники. Поскольку АКБ в них состоят в блоке, где контактные соединения выполнены микросваркой, при ремонте требуется извлечь отработанный элемент и поставить на его место новый, воссоздав надежный контакт между ними. При этом используется точечная сварка для аккумуляторов. Такой аппарат можно создать самому по одной из нескольких технологий, описанных ниже.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Точечная сварка своими руками на базе трансформатора ОСМ-0.63

Точечная сварка своими руками

Контактная сварка, помимо технологических достоинств применения, обладает еще одним важным преимуществом — несложное оборудование для нее можно изготовить самостоятельно, а его эксплуатация не потребует специфических навыков и первоначального опыта. Контактная сварка, своими руками собранная, может быть использована для решения довольно широкого спектра задач несерийного и непромышленного характера по ремонту и изготовлению изделий, механизмов, оборудования из различных металлов как в домашних условиях, так и в небольших мастерских.

Контактная сварка обеспечивает создание сварного соединения деталей за счет нагрева области их соприкосновения проходящим через них электрическим током при одновременном приложении сжимающего усилия к зоне соединения. В зависимости от материала его теплопроводности и геометрических размеров деталей, а также мощности используемого для их сваривания оборудования процесс контактной сварки должен протекать при следующих параметрах:. Соблюдение всех этих характеристик напрямую влияет на качество получаемого сварного соединения.

Самостоятельно можно изготовить только устройства для точечной сварки , как на видео. Проще всего собрать аппарат переменного сварочного тока с нерегулируемой силой.

В нем управление процессом соединения деталей осуществляется за счет изменения продолжительности подаваемого электрического импульса. Для этого используют реле времени либо справляются с этой задачей вручную “на глазок” с помощью выключателя.

Самодельная точечная контактная сварка не очень сложна в изготовлении, а для выполнения ее основного узла — сварочного трансформатора — можно подобрать трансформаторы от старых микроволновок, телевизоров, ЛАТРов, инверторов и тому подобного.

Обмотки подходящего трансформатора надо будет перемотать в соответствии с необходимым напряжением и сварочным током на его выходе. Схему управления подбирают готовую или разрабатывают, а все остальные комплектующие и, в частности, для контактно-сварочного механизма берут, исходя из мощности и параметров сварочного трансформатора.

Контактно-сварочный механизм изготавливают в соответствии с характером предстоящих сварочных работ по какой-либо из известных схем. Обычно делают сварочные клещи. Все электрические соединения должны быть выполнены качественно и иметь хороший контакт.

А соединения с использованием проводов — из проводников с сечением, соответствующим протекающему по ним току как показано на видео. Особенно это касается силовой части — между трансформатором и электродами клещей. При плохих контактах цепи последних в местах соединений будут большие потери энергии, возможно возникновение искрения, а сваривание может стать невозможным. Устройство точечной сварки для соединения деталей контактным способом можно собрать по ниже приведенным схемам.

Предлагаемый аппарат рассчитан на сварку металлов:. На Рис. Предлагаемая контактная сварка состоит из силовой части, цепи управления и автоматического выключателя АВ1, который служит для включения питания устройства и защиты в случае возникновения аварийных ситуаций. Первый узел включает сварочный трансформатор Т2 и бесконтактный тиристорный однофазный пускатель типа МТТ4К, который осуществляет подключение первичной обмотки Т2 к питающей сети.

Первичная обмотка имеет 6 выводов, переключением которых можно осуществлять ступенчатую грубую регулировку выходного сварочного тока вторичной обмотки. Этот модуль представляет собой тиристорный ключ, который при замыкании его контактов 5 и 4 коммутирует нагрузку через контакты 1 и 3, подключенные в разрыв цепи первичной обмотки Тр2.

Производят такие модули в г. В блоке питания может быть использован любой трансформатор мощностью не более 20 Вт, предназначенный для работы от сети В и выдающий на вторичной обмотке напряжение 20—25 В. В качестве выпрямителя предлагается установить диодный мост типа КЦ, но может быть применен любой другой с аналогичными параметрами либо собран из отдельных диодов.

Это происходит при подаче напряжения от цепи управления на обмотку его катушки. Так как коммутируемый ток, протекающий через замкнутые контакты 4 и 5 тиристорного ключа, не превышает мА, то в качестве K1 подойдет практически любое слаботочное электромагнитное реле с напряжением срабатывания в пределах 15—20 В, например, РЭС55, РЭС43, РЭС32 и подобные.

Цепь управления выполняет функции реле времени. Включая K1 на заданный промежуток времени, она задает продолжительность воздействия электрического импульса на свариваемые детали.

Состоит цепь управления из конденсаторов С1—С6, которые должны быть электролитическими с напряжением зарядки 50 В или выше, переключателей типа П2К, имеющих независимую фиксацию, кнопки КН1 и двух резисторов — R1 и R2.

КН1 должна быть с одним нормально-замкнутым, а другим нормально-разомкнутым контактами. При включении АВ1 начинают заряжаться конденсаторы, подключенные с помощью П2К к цепи управления и блоку питания на Рис. Зарядка происходит через скоммутированную на тот момент нормально-замкнутую контактную группу кнопки КН1. При нажатии на КН1 нормально-замкнутая контактная группа размыкается, отключая цепь управления от блока питания, а нормально-разомкнутая — замыкается, подсоединяя заряженные емкости к реле K1.

Конденсаторы при этом разряжаются, и ток разрядки приводит к срабатыванию K1. Разомкнутая нормально-замкнутая контактная группа КН1 препятствует запитыванию реле непосредственно от блока питания. Чем больше суммарная емкость разряжающихся конденсаторов, тем дольше они разряжаются, и, соответственно, K1 дольше замыкает контакты 4 и 5 ключа МТТ4К, и продолжительнее сварочный импульс.

Когда конденсаторы полностью разрядятся, K1 отключится, и контактная сварка прекратит свою работу. Чтобы ее подготовить к следующему импульсу, КН1 надо отпустить. Разрядка конденсаторов происходит через резистор R2, который должен быть переменным и служит для более точного регулирования продолжительности сварочного импульса. Предлагаемая контактная сварка может быть собрана, как показано по видео, на основе сварочного трансформатора, изготовленного с использованием магнитопровода от трансформатора на 2,5 А.

Такие встречаются в ЛАТРах, лабораторных приборах и ряде других устройств. Старую обмотку необходимо удалить.

На торцах магнитопровода надо установить кольца, изготовленные из тонкого электрокартона. Их подгибают по внутренней и внешней кромке. Затем магнитопровод надо обмотать поверх колец 3-мя или большим количеством слоев лакоткани. Для выполнения обмоток используют провода:. Количество витков указано на Рис. От первичной обмотки делаются промежуточные выводы. После намотки ее пропитывают лаком ЭП, КС либо подобным.

Поверх первичной катушки наматывают хлопчатобумажную ленту 1 слой , которую тоже пропитывают лаком. Затем укладывают вторичную обмотку и снова делают пропитку лаком. Контактная сварка может быть оснащена клещами, которые монтируют непосредственно в сам корпус устройства, как на видео, либо выносными в виде ножниц.

Первые, с точки зрения выполнения качественной, надежной изоляции между их узлами и обеспечения хорошего контакта в цепи от трансформатора до электродов, изготовить и подсоединить гораздо проще, чем выносные. Однако прижимное усилие, развиваемое такой конструкцией, если не нарастить длину подвижного рычага клещей после электрода, будет равно усилию, создаваемому непосредственно сварщиком.

Выносными клещами удобнее пользоваться — можно работать на некотором удалении от аппарата. А усилие, развиваемое ими, будет зависеть от длины ручек. Однако надо будет в месте их подвижного болтового соединения сделать достаточно хорошую изоляцию из текстолитовых втулок и шайб. Изготавливая клещи, нужно заранее предусмотреть необходимый вылет их электродов — расстояние от корпуса аппарата или места подвижного соединения ручек до электродов.

От этого параметра будет зависеть максимально возможное расстояние от кромки листовой детали до места, где выполняется сварка.

Электроды клещей делают из прутков меди либо бериллиевой бронзы. Можно использовать жала мощных паяльников. В любом случае диаметр электродов должен быть не меньше, чем у подводящих к ним ток проводов. Чтобы получать сварочные ядра нужного качества, у контактных площадок кончиков электродов размер должен быть как можно меньше. В этой статье мы рассмотрим различные механические трубогибы, которые можно использовать руками, применяя только мускульную Статья подскажет вам, какое специальное оборудование имеет смысл приобрести, если вы планируете производить работы по Контактная сварка — как самому изготовить оборудование и клещи?

Содержание Принципы конструирования и сборки контактной сварки Схема устройства для сварки металла толщиной до 1 мм Цепь управления — из чего состоит и как работает?

Силовая часть — трансформатор Как сделать клещи? Рекомендуемые организации. Трубогиб ручной ТР и другие марки — рассматриваем типы этого приспособления В этой статье мы рассмотрим различные механические трубогибы, которые можно использовать руками, применяя только мускульную Виды сварочных аппаратов — обзор популярных моделей Статья подскажет вам, какое специальное оборудование имеет смысл приобрести, если вы планируете производить работы по

Изготовление сварочного аппарата из деталей старых телевизоров

Домашние слесарные работы — часть жизни хозяйственного человека. Одним из наиболее популярных домашних устройств считается точечная сварка. Она предполагает наличие заводского или самодельного сварочного устройства. Создать подобный аппарат, которым будет осуществляться точечная сварка своими руками несложно, необходимо лишь желание и некоторые подручные средства. На сегодняшний день точечная сварка востребована не только в быту, но и в производстве, так как она способна разрешить даже самые трудновыполнимые задачи. В промышленности, как правило, применяют устройства, работающие в автоматическом режиме, в бытовых условиях применяют сварочный аппарат-полуавтомат для точечной сварки.

Точечная сварка для аккумуляторов своими руками

Интересуетесь, как сделать сварочный аппарат из микроволновки в домашних условиях на базе трансформатора устаревшей СВЧ печи без крупных вложений и специального оборудования по отработанной схеме? Самоделка в импульсном режиме даёт 5-кратное увеличение мощности, ампераж возрастает в раз. Контактная сварка из микроволновки без регулировки силы переменного тока с производственным аппаратом не сравнится, но в рамках бытовой надобности справится с работой не хуже. Базовый элемент устройства трансформатор. Поиск и приобретение фабричного изделия необязательны, если есть бывшая в употреблении микроволновая печь большой мощности. Принципиальная схема сборки в обоих случаях однотипна. Визуальный критерий выбора микроволновки для разборки — габариты.

Самодельная точечная сварка

Время чтения: 6 минут. Этим вопросом задаются многие практикующие и опытные мастера. Это не удивительно, ведь заводские сварочные аппараты порой очень дороги и сложны в обслуживании, а самодельный агрегат прост и стоит недорого. Вы узнаете, как собрать точечную сварку, инвертор, полуавтомат, аргонодуговую сварку и даже споттер.

Роликовая сварка своими руками

Для этого трансформаторы, и петли размагничивания аккуратно разбираются. Из гетинакса толщиной 2,5 мм изготавливают каркас по чертежам рис 2. Устройство выдержки времени позволяет формировать импульс длительностью от 1 до полуволн сетевого напряжения, то есть от 0,01 до 9,9 секунды с точностью 0,01 сек. Все детали устройства управления размещены на односторонней печатной плате размерами х60 мм. Ее чертеж показан на рис 4. Трансформаторы от телевизоров для сборки силового трансформатора надо выбирать с маркировкой ТС

Точечный сварочный аппарат своими руками

Многие не желают зависеть от обстоятельств. Если вдруг потребовалась сварка, то хочется решить проблему в своей мастерской. Аппарат для контактной сварки своими руками — это решение в нужном направлении. Для выполнения контактной сварки своими руками необходимо приобрести или изготовить самому специальный аппарат. Конечно, если надо сварить большие металлические конструкции, то контактной сварке трудно конкурировать с другими видами. В то же время в домашних условиях велика потребность в сварке небольших деталей. Такие задачи становятся легко разрешимыми, если сделать свой аппарат контактной сварки.

Как сделать споттер из сварочного аппарата своими руками

Аппараты для точечной сварки не так часто используются в быту, как дуговые, но иногда без них невозможно обойтись. Выход из такой ситуации — контактная точечная сварка своими руками. Но, прежде чем рассказать, как самостоятельно сделать такое устройство, давайте рассмотрим, что представляет собой точечная сварка и технологию ее работы.

Точечная сварка в домашних условиях

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой.

Решил вылижить фото контактной сварки которую сделал несколько лет назад может кому будет полезно. Вторичную обмотку разматываем, берем проволоку медную и делаем из нее жгут сечением 2. Чем меньше силы тока тем меньшей толщины жестянку можно будет приварить, в моем случае сварка берет 0,7 мм ,0,8 раз на раз. В моем случае первичную обмотку делал мотков после го мотка делал отход через каждые 50 мотков для переключателя, с помощью переключателя переключаемся на нужное число мотков, чем на меньшее число мотков переключаемся тем больше силы тока получаем. Схему нарисую и выложу но пока что смысл таков: конденсаторы всегда в заряжающем состоянии, как только мы замыкаем ключ конденсаторы переходят из заряжающего состояния в разряжающее, замыкая тем самым реле идуший на контактор, контактор замыкается и со вторичной обмотки ток пускается на уже замкнутые контакты медных наконечников, нагревая тем самым железо. У многих из нас в гараже, на балконе или на даче есть старые ламповые телевизоры советского производства.

Контактная сварка, сделанная своими руками, обладает рядом преимуществ. Главным из них является простота изготовления сварочного аппарата. Фактически, его можно изготовить на собственном приусадебном участке. О простоте изготовления можно уже судить по тому, что контактная сварка, выполненная своими руками из собственной микроволновки — это вполне работающий рецепт изготовления.

Ссылка на основную публикацию